'월드 벤치마크'에 해당되는 글 109건

  1. 2017.07.29 AMD 라이젠3 1300X, 1200 성능 by 랩터 인터내셔널
  2. 2017.07.01 AMD 라데온 베가 프론티어 에디션 16GB 성능 공개 by 랩터 인터내셔널
  3. 2017.06.25 인텔 스카이레이크X 7900X, 7820X, 7800X, 카비레이크X 7740 테스트 by 랩터 인터내셔널
  4. 2017.06.11 게이밍에서 AMD 라이젠 vs. 인텔 CPU 성능 비교 by 랩터 인터내셔널
  5. 2017.06.04 스카이레이크-X 7800X 7900X vs. 라이젠 1800X 성능 비교 by 랩터 인터내셔널
  6. 2017.05.14 갤럭시 S8 Vs. LG G6 카메라 성능 비교 (ITworld) by 랩터 인터내셔널
  7. 2017.05.01 AMD 라데온 RX 550 2GB Review, Polaris 12 GPU by 랩터 인터내셔널
  8. 2017.04.23 AMD 라데온RX 580, RX 570 vs 지포스GTX 1060 by 랩터 인터내셔널
  9. 2017.04.16 AMD 라이젠5 1600X, 1500X 성능 vs 인텔 7600k 1 by 랩터 인터내셔널
  10. 2017.04.08 퀄컴 스냅드래곤 835 vs 애플 A10 AP 성능 비교 by 랩터 인터내셔널


AMD Ryzen SKUs
 Cores/
Threads
Base/
Turbo
XFRL3TDPRetail
7/27
Cooler
Ryzen 7 1800X8/163.6/4.0+10016 MB95 W$419-
Ryzen 7 1700X8/163.4/3.8+10016 MB95 W$299-
Ryzen 7 17008/163.0/3.7+5016 MB65 W$279Spire
RGB
Ryzen 5 1600X6/123.6/4.0+10016 MB95 W$229-
Ryzen 5 16006/123.2/3.6+10016 MB65 W$209Spire
Ryzen 5 1500X4/83.5/3.7+20016 MB65 W$189Spire
Ryzen 5 14004/83.2/3.4+508 MB65 W$159Stealth
Ryzen 3 1300X4/43.5/3.7+2008 MB65 W$129Stealth
Ryzen 3 12004/43.1/3.4+508 MB65 W$109Stealth



새롭게 등장한 라이젠3 1300X, 1200은 모두 4코어 4스레드 제품으로 1300X가 베이스 3.5 클럭, 부스트 3.7클럭, 1200이 베이스 3.1 클럭, 부스트 3.4 클럭, L3캐시는 8MB, TDP 65와트


Comparison: AMD Ryzen 3 1300X
FeaturesIntel
Core i3-7100
AMD
Ryzen 3 1300X
Intel
Core i3-7300
PlatformZ270, B250X370, B350, A320Z270, B250
SocketLGA1151AM4LGA1151
Cores/Threads2 / 44 / 42 / 4
Base/Turbo/XFR3.9 GHz3.4 / 3.7 / 3.9 GHz4.0 GHz
GPU PCIe 3.0x16x16x16
L2 Cache256 KB/core512 KB/core256 KB/core
L3 Cache3 MB8 MB4 MB
TDP51W65W51W
Retail Price (7/28)$115$129$149


인텔 7100 모델과 라이젠 1300X 스펙비교, 인텔은 2코어 4스레드, 3MB 캐시에 51와트, 1300X는 4코어 4스레드에 8MB 캐시, 65와트


Comparison: AMD Ryzen 3 1200
FeaturesIntel
Pentium G4560
Intel
Pentium G4620
AMD
Ryzen 3 1200
Intel
Core i3-7100
Platform200-series200-series300-series200-series
SocketLGA 1151LGA1151AM4LGA1151
Cores/Threads2 / 42 / 44 / 42 / 4
Base/Turbo3.5 GHz3.7 GHz3.1 / 3.4 GHz3.9 GHz
GPU PCIe 3.0x16x16x16x16
L2 Cache256 KB/core256 KB/core512 KB/core256 KB/core
L3 Cache3 MB3 MB8 MB3 MB
TDP54 W51W65W51W
Retail (7/28)$80$105$109$115

 

테스트 시스템


Test Setup
ProcessorAMD Ryzen 3 1300X (4C/4T, 3.4G, 65W)
AMD Ryzen 3 1200 (4C/4T, 3.1G, 65W)
MotherboardsASUS Crosshair VI Hero
CoolingNoctua NH-U12S SE-AM4
Power SupplyCorsair AX860i
MemoryCorsair Vengeance DDR4-3000 C15 2x8GB
Memory SettingsDDR4-2400 C15
Video CardsMSI GTX 1080 Gaming X 8GB
ASUS GTX 1060 Strix 6GB
Sapphire Nitro R9 Fury 4GB
Sapphire Nitro RX 480 8GB
Sapphire Nitro RX 460 4GB (CPU Tests)
Hard DriveCrucial MX200 1TB
Optical DriveLG GH22NS50
CaseOpen Test Bed
Operating SystemWindows 10 Pro 64-bit


FCAT Processing: link

One of the more interesting workloads that has crossed our desks in recent quarters is FCAT - the tool we use to measure stuttering in gaming due to dropped or runt frames. The FCAT process requires enabling a color-based overlay onto a game, recording the gameplay, and then parsing the video file through the analysis software. The software is mostly single-threaded, however because the video is basically in a raw format, the file size is large and requires moving a lot of data around. For our test, we take a 90-second clip of the Rise of the Tomb Raider benchmark running on a GTX 980 Ti at 1440p, which comes in around 21 GB, and measure the time it takes to process through the visual analysis tool.

System: FCAT Processing ROTR 1440p GTX1080 Data

3D Movement Algorithm Test v2.1: link

This is the latest version of the self-penned 3DPM benchmark. The goal of 3DPM is to simulate semi-optimized scientific algorithms taken directly from my doctorate thesis. Version 2.1 improves over 2.0 by passing the main particle structs by reference rather than by value, and decreasing the amount of double->float->double recasts the compiler was adding in. It affords a ~25% speed-up over v2.0, which means new data.

System: 3D Particle Movement v2.1

DigiCortex v1.20: link

Despite being a couple of years old, the DigiCortex software is a pet project for the visualization of neuron and synapse activity in the brain. The software comes with a variety of benchmark modes, and we take the small benchmark which runs a 32k neuron/1.8B synapse simulation. The results on the output are given as a fraction of whether the system can simulate in real-time, so anything above a value of one is suitable for real-time work. The benchmark offers a 'no firing synapse' mode, which in essence detects DRAM and bus speed, however we take the firing mode which adds CPU work with every firing.

System: DigiCortex 1.20 (32k Neuron, 1.8B Synapse)

Agisoft Photoscan 1.0: link

Photoscan stays in our benchmark suite from the previous version, however now we are running on Windows 10 so features such as Speed Shift on the latest processors come into play. The concept of Photoscan is translating many 2D images into a 3D model - so the more detailed the images, and the more you have, the better the model. The algorithm has four stages, some single threaded and some multi-threaded, along with some cache/memory dependency in there as well. For some of the more variable threaded workload, features such as Speed Shift and XFR will be able to take advantage of CPU stalls or downtime, giving sizeable speedups on newer microarchitectures.

System: Agisoft Photoscan 1.0 Total Time


Corona 1.3: link

Corona is a standalone package designed to assist software like 3ds Max and Maya with photorealism via ray tracing. It's simple - shoot rays, get pixels. OK, it's more complicated than that, but the benchmark renders a fixed scene six times and offers results in terms of time and rays per second. The official benchmark tables list user submitted results in terms of time, however I feel rays per second is a better metric (in general, scores where higher is better seem to be easier to explain anyway). Corona likes to pile on the threads, so the results end up being very staggered based on thread count.

Rendering: Corona Photorealism

Blender 2.78: link

For a render that has been around for what seems like ages, Blender is still a highly popular tool. We managed to wrap up a standard workload into the February 5 nightly build of Blender and measure the time it takes to render the first frame of the scene. Being one of the bigger open source tools out there, it means both AMD and Intel work actively to help improve the codebase, for better or for worse on their own/each other's microarchitecture.

Rendering: Blender 2.78

LuxMark v3.1: Link

As a synthetic, LuxMark might come across as somewhat arbitrary as a renderer, given that it's mainly used to test GPUs, but it does offer both an OpenCL and a standard C++ mode. In this instance, aside from seeing the comparison in each coding mode for cores and IPC, we also get to see the difference in performance moving from a C++ based code-stack to an OpenCL one with a CPU as the main host.

Rendering: LuxMark CPU C++Rendering: LuxMark CPU OpenCL

POV-Ray 3.7.1b4: link

Another regular benchmark in most suites, POV-Ray is another ray-tracer but has been around for many years. It just so happens that during the run up to AMD's Ryzen launch, the code base started to get active again with developers making changes to the code and pushing out updates. Our version and benchmarking started just before that was happening, but given time we will see where the POV-Ray code ends up and adjust in due course.

Rendering: POV-Ray 3.7

Cinebench R15: link

The latest version of CineBench has also become one of those 'used everywhere' benchmarks, particularly as an indicator of single thread performance. High IPC and high frequency gives performance in ST, whereas having good scaling and many cores is where the MT test wins out.

Rendering: CineBench 15 SingleThreadedRendering: CineBench 15 MultiThreaded


SunSpider 1.0.2: link

The oldest web-based benchmark in this portion of our test is SunSpider. This is a very basic javascript algorithm tool, and ends up being more a measure of IPC and latency than anything else, with most high-performance CPUs scoring around about the same. The basic test is looped 10 times and the average taken. We run the basic test 4 times.

Web: SunSpider on Chrome 56

Mozilla Kraken 1.1: link

Kraken is another Javascript based benchmark, using the same test harness as SunSpider, but focusing on more stringent real-world use cases and libraries, such as audio processing and image filters. Again, the basic test is looped ten times, and we run the basic test four times.

Web: Mozilla Kraken 1.1 on Chrome 56

Google Octane 2.0: link

Along with Mozilla, as Google is a major browser developer, having peak JS performance is typically a critical asset when comparing against the other OS developers. In the same way that SunSpider is a very early JS benchmark, and Kraken is a bit newer, Octane aims to be more relevant to real workloads, especially in power constrained devices such as smartphones and tablets.

Web: Google Octane 2.0 on Chrome 56

WebXPRT 2015: link

While the previous three benchmarks do calculations in the background and represent a score, WebXPRT is designed to be a better interpretation of visual workloads that a professional user might have, such as browser based applications, graphing, image editing, sort/analysis, scientific analysis and financial tools.

Web: WebXPRT 15 on Chrome 56


7-Zip 9.2: link

One of the freeware compression tools that offers good scaling performance between processors is 7-Zip. It runs under an open-source licence, is fast, and easy to use tool for power users. We run the benchmark mode via the command line for four loops and take the output score.

Encoding: 7-Zip

WinRAR 5.40: link

For the 2017 test suite, we move to the latest version of WinRAR in our compression test. WinRAR in some quarters is more user-friendly that 7-Zip, hence its inclusion. Rather than use a benchmark mode as we did with 7-Zip, here we take a set of files representative of a generic stack (33 video files in 1.37 GB, 2834 smaller website files in 370 folders in 150 MB) of compressible and incompressible formats. The results shown are the time taken to encode the file. Due to DRAM caching, we run the test 10 times and take the average of the last five runs when the benchmark is in a steady state.

Encoding: WinRAR 5.40

AES Encoding

Algorithms using AES coding have spread far and wide as a ubiquitous tool for encryption. Again, this is another CPU limited test, and modern CPUs have special AES pathways to accelerate their performance. We often see scaling in both frequency and cores with this benchmark. We use the latest version of TrueCrypt and run its benchmark mode over 1GB of in-DRAM data. Results shown are the GB/s average of encryption and decryption.

Encoding: AES

HandBrake v1.0.2 H264 and HEVC: link

As mentioned above, video transcoding (both encode and decode) is a hot topic in performance metrics as more and more content is being created. First consideration is the standard in which the video is encoded, which can be lossless or lossy, trade performance for file-size, trade quality for file-size, or all of the above can increase encoding rates to help accelerate decoding rates. Alongside Google's favorite codec, VP9, there are two others that are taking hold: H264, the older codec, is practically everywhere and is designed to be optimized for 1080p video, and HEVC (or H265) that is aimed to provide the same quality as H264 but at a lower file-size (or better quality for the same size). HEVC is important as 4K is streamed over the air, meaning less bits need to be transferred for the same quality content.

Handbrake is a favored tool for transcoding, and so our test regime takes care of three areas.

Low Quality/Resolution H264: He we transcode a 640x266 H264 rip of a 2 hour film, and change the encoding from Main profile to High profile, using the very-fast preset.

Encoding: Handbrake H264 (LQ)

High Quality/Resolution H264: A similar test, but this time we take a ten-minute double 4K (3840x4320) file running at 60 Hz and transcode from Main to High, using the very-fast preset.

Encoding: Handbrake H264 (HQ)

HEVC Test: Using the same video in HQ, we change the resolution and codec of the original video from 4K60 in H264 into 4K60 HEVC.

Encoding: Handbrake HEVC (4K)


PCMark8: link

Despite originally coming out in 2008/2009, Futuremark has maintained PCMark8 to remain relevant in 2017. On the scale of complicated tasks, PCMark focuses more on the low-to-mid range of professional workloads, making it a good indicator for what people consider 'office' work. We run the benchmark from the commandline in 'conventional' mode, meaning C++ over OpenCL, to remove the graphics card from the equation and focus purely on the CPU. PCMark8 offers Home, Work and Creative workloads, with some software tests shared and others unique to each benchmark set.

Office: PCMark8 Creative (non-OpenCL)

Office: PCMark8 Home (non-OpenCL)

SYSmark 2014 SE: link

SYSmark is developed by Bapco, a consortium of industry CPU companies. The goal of SYSmark is to take stripped down versions of popular software, such as Photoshop and Onenote, and measure how long it takes to process certain tasks within that software. The end result is a score for each of the three segments (Office, Media, Data) as well as an overall score. Here a reference system (Core i3-6100, 4GB DDR3, 256GB SSD, Integrated HD 530 graphics) is used to provide a baseline score of 1000 in each test.

A note on context for these numbers. AMD left Bapco in the last two years, due to differences of opinion on how the benchmarking suites were chosen and AMD believed the tests are angled towards Intel processors and had optimizations to show bigger differences than what AMD felt was present. The following benchmarks are provided as data, but the conflict of opinion between the two companies on the validity of the benchmark is provided as context for the following numbers.


3D Particle Movement v1

3DPM is a self-penned benchmark, taking basic 3D movement algorithms used in Brownian Motion simulations and testing them for speed. High floating point performance, MHz and IPC wins in the single thread version, whereas the multithread version has to handle the threads and loves more cores. This is the original version, written in the style of a typical non-computer science student coding up an algorithm for their theoretical problem, and comes without any non-obvious optimizations not already performed by the compiler, such as false sharing.

Legacy: 3DPM v1 Single Threaded

Legacy: 3DPM v1 MultiThreaded

CineBench 11.5 and 10

Cinebench is a widely known benchmarking tool for measuring performance relative to MAXON's animation software Cinema 4D. Cinebench has been optimized over a decade and focuses on purely CPU horsepower, meaning if there is a discrepancy in pure throughput characteristics, Cinebench is likely to show that discrepancy. Arguably other software doesn't make use of all the tools available, so the real world relevance might purely be academic, but given our large database of data for Cinebench it seems difficult to ignore a small five-minute test. We run the modern version 15 in this test, as well as the older 11.5 and 10 due to our back data.

Legacy: CineBench 11.5 Single ThreadedLegacy: CineBench 11.5 MultiThreadedLegacy: CineBench 10 Single ThreadedLegacy: CineBench 10 MultiThreaded

x264 HD 3.0

Similarly, the x264 HD 3.0 package we use here is also kept for historic regressional data. The latest version is 5.0.1, and encodes a 1080p video clip into a high-quality x264 file. Version 3.0 only performs the same test on a 720p file, and in most circumstances the software performance hits its limit on high-end processors, but still works well for mainstream and low-end. Also, this version only takes a few minutes, whereas the latest can take over 90 minutes to run.

Legacy: x264 3.0 Pass 1Legacy: x264 3.0 Pass 2


example of a mid-game setup at our settings.

At both 1920x1080 and 4K resolutions, we run the same settings. Civilization 6 has sliders for MSAA, Performance Impact and Memory Impact. The latter two refer to detail and texture size respectively, and are rated between 0 (lowest) to 5 (extreme). We run our Civ6 benchmark in position four for performance (ultra) and 0 on memory, with MSAA set to 2x.

For reviews where we include 8K and 16K benchmarks (Civ6 allows us to benchmark extreme resolutions on any monitor) on our GTX 1080, we run the 8K tests similar to the 4K tests, but the 16K tests are set to the lowest option for Performance.

For all our results, we show the average frame rate at 1080p first. Mouse over the other graphs underneath to see 99th percentile frame rates and 'Time Under' graphs, as well as results for other resolutions. All of our benchmark results can also be found in our benchmark engine, Bench.

MSI GTX 1080 Gaming 8G Performance

89130.png
 


For our benchmark, we run a fixed v2.11 version of the game due to some peculiarities of the splash screen added after the merger with the standalone Escalation expansion, and have an automated tool to call the benchmark on the command line. (Prior to v2.11, the benchmark also supported 8K/16K testing, however v2.11 has odd behavior which nukes this.)

At both 1920x1080 and 4K resolutions, we run the same settings. Ashes has dropdown options for MSAA, Light Quality, Object Quality, Shading Samples, Shadow Quality, Textures, and separate options for the terrain. There are several presents, from Very Low to Extreme: we run our benchmarks at Extreme settings, and take the frame-time output for our average, percentile, and time under analysis.

For all our results, we show the average frame rate at 1080p first. Mouse over the other graphs underneath to see 99th percentile frame rates and 'Time Under' graphs, as well as results for other resolutions. All of our benchmark results can also be found in our benchmark engine, Bench.

MSI GTX 1080 Gaming 8G Performance

89142.png
 


The title has an in-game benchmark, for which we run with an automated script implement the graphics settings, select the benchmark, and parse the frame-time output which is dumped on the drive. The graphics settings include standard options such as Graphical Quality, Lighting, Mesh, Motion Blur, Shadow Quality, Textures, Vegetation Range, Depth of Field, Transparency and Tessellation. There are standard presets as well.

We run the benchmark at 1080p and a native 4K, using our 4K monitors, at the Ultra preset. Results are averaged across four runs and we report the average frame rate, 99th percentile frame rate, and time under analysis. 

For all our results, we show the average frame rate at 1080p first. Mouse over the other graphs underneath to see 99th percentile frame rates and 'Time Under' graphs, as well as results for other resolutions. All of our benchmark results can also be found in our benchmark engine, Bench.

MSI GTX 1080 Gaming 8G Performance

89156.png
 


#1 Geothermal Valley

MSI GTX 1080 Gaming 8G Performance

89161.png
 


#2 Prophet's Tomb 

MSI GTX 1080 Gaming 8G Performance

89170.png
 

#3 Spine of the Mountain 

MSI GTX 1080 Gaming 8G Performance

89172.png
 


The graphics settings for Rocket League come in four broad, generic settings: Low, Medium, High and High FXAA. There are advanced settings in place for shadows and details; however, for these tests, we keep to the generic settings. For both 1920x1080 and 4K resolutions, we test at the High preset with an unlimited frame cap.

For all our results, we show the average frame rate at 1080p first. Mouse over the other graphs underneath to see 99th percentile frame rates and 'Time Under' graphs, as well as results for other resolutions. All of our benchmark results can also be found in our benchmark engine, Bench.

MSI GTX 1080 Gaming 8G Performance

89181.png
 


There are no presets for the graphics options on GTA, allowing the user to adjust options such as population density and distance scaling on sliders, but others such as texture/shadow/shader/water quality from Low to Very High. Other options include MSAA, soft shadows, post effects, shadow resolution and extended draw distance options. There is a handy option at the top which shows how much video memory the options are expected to consume, with obvious repercussions if a user requests more video memory than is present on the card (although there’s no obvious indication if you have a low end GPU with lots of GPU memory, like an R7 240 4GB).

To that end, we run the benchmark at 1920x1080 using an average of Very High on the settings, and also at 4K using High on most of them. We take the average results of four runs, reporting frame rate averages, 99th percentiles, and our time under analysis.

For all our results, we show the average frame rate at 1080p first. Mouse over the other graphs underneath to see 99th percentile frame rates and 'Time Under' graphs, as well as results for other resolutions. All of our benchmark results can also be found in our benchmark engine, Bench.

MSI GTX 1080 Gaming 8G Performance

89184.png
 


Power Consumption

For our power consumption readings, we run a Prime 95 load and slowly ramp up the number of threads in play, taking power data from the internal CPU registers that report for when turbo modes or thermal modes should activate. Depending on the CPU access, we can get data that varies from the full package down to individual cores, uncore, integrated graphics and DRAM controllers.

For the Ryzen CPUs, the API pulls out the total package power consumption first.

 Power: Total Package (Idle)Power: Total Package (1T)Power: Total Package (Full Load)

At idle, all the CPUs are pretty much equivalent. The cores are fully idle here, leaving the rest of the chip active enough for tick-over. As we ramp up the load, the higher-frequency Ryzen CPUs move towards their 65W TDP, with the Ryzen 3 1300X almost being spot on at 64.2W. The Intel CPUs are clocked higher, but only have two cores to contend with.  The Ryzen 3 1200 is clocked lower than the Ryzen 3 1300X, hitting a better efficiency point in the Zen design. This ultimately bodes well for upcoming quad-core SKUs in laptops.

Power: Cores Only (1T Load)Power: Cores Only (Full Load)

One of the odd things about the power consumption of the Ryzen 3 CPUs is the difference between how much power the cores internally measure compared to the full power consumption of the package measured as a whole, including the Infinity Fabric, DRAM controllers, IO and such. For the Ryzen 3 1200 for example, at full load the package has a power consumption of 40.43 W total, but the cores only count for 23.05W, leaving 17.38W on the table for the non-core elements in the chip. If we compare that to the Ryzen 5 1500X, we have 68.79W for the package and 49.69W for the cores, a 19.1W difference. For the Ryzen 7 1700X, it becomes 81.51W for the package and 62.10W for the cores, a 19.4W difference.



AMD CPU의 경우 1300X 및 1500X는 기본 / 터보 주파수 (3400/3700 대 3500/3700)에 가까워 거의 같으며 Ryzen 3 1200은 3100/3400에서 약 13 % 낮아집니다.

Intel CPU는 3.5 GHz의 Pentium G4560과 Core i3의 3.9 GHz, 4.0 GHz 및 4.1 GHz에서 차별화 된 커브를 보여줍니다. Core i5 7400의 기저 주파수는 3.0 GHz이고 터보는 3.5 GHz입니다.


For the multi-thread performance:


Ryzen 3 1200은 다시 -12% 정도로 낮아지는 반면 동시 다중 스레딩을 사용하는 Ryzen 5 1500X는 1300X보다 +40% 증가합니다. Ryzen 3 1200과 Core i3 - 7300은 밀접하게 매치되었지만 Ryzen은 ~ 40달러 저렴하게 가격에 이긴다하더라도 모든 듀얼 코어 인텔 제품은 AMD의 쿼드 코어에 비해 뒤쳐져 있습니다. Core i5-7400은 Ryzen 3 1300X와 경쟁하며 쿼드 코어이므로 IPC가 높기 때문에 주파수는 낮지만 인텔은 $50 + 프리미엄으로 제공됩니다.

결합 된 올인원 그래프의 경우 혼합 된 작업 부하 데이터를 포함하고 단일 : 다중 : 혼합 스레드 작업 부하에 대해 결과에 40:50:10을 가중했습니다.


첫째, Ryzen 3 1200은 매력적인 옵션이 아닙니다. 펜티엄의 +2 -3%을 수행하지만 30달러가 더 비쌉니다. 코어 i3-7100은 10달러 이하의 비용으로 8%를 상회합니다.

다음 Ryzen 3 1300X는 코어 i3 - 7300 / 7320과 코어 i5 - 7400에 비해 달러당 성능에 분명히 승리합니다. Core i3 - 7100과 비교했을때는 10 - 15% 정도의 성능 향상을 보였는데 이는 비용의 10% 미만입니다. 예산에 따라 각 옵션은 매력적인 옵션일 수 있습니다.


출처 - http://www.anandtech.com

반응형
Posted by 랩터 인터내셔널



 Vega Frontier EditionTitan XpGTX 1080 TiTitan X (Pascal)GTX 1080TITAN XGTX 980R9 Fury XR9 Fury
GPUVegaGP102GP102GP102GP104GM200GM204Fiji XTFiji Pro
GPU Cores409638403584358425603072204840963584
Base Clock1382 MHz1480 MHz1480 MHz1417 MHz1607 MHz1000 MHz1126 MHz1050 MHz1000 MHz
Boost Clock1600 MHz1582 MHz1582 MHz1480 MHz1733 MHz1089 MHz1216 MHz--
Texture Units?224224224160192128256224
ROP Units649688966496646464
Memory16GB12GB11GB12GB8GB12GB4GB4GB4GB
Memory Clock1890 MHz11400 MHz11000 MHz10000 MHz10000 MHz7000 MHz7000 MHz1000 MHz1000 MHz
Memory Interface2048-bit HBM2384-bit G5X352-bit384-bit G5X256-bit G5X384-bit256-bit4096-bit (HBM)4096-bit (HBM)
Memory Bandwidth483 GB/s547.7 GB/s484 GB/s480 GB/s320 GB/s336 GB/s224 GB/s512 GB/s512 GB/s
TDP300 watts250 watts250 watts250 watts180 watts250 watts165 watts275 watts275 watts
Peak Compute13.1 TFLOPS12.0 TFLOPS10.6 TFLOPS10.1 TFLOPS8.2 TFLOPS6.14 TFLOPS4.61 TFLOPS8.60 TFLOPS7.20 TFLOPS
Transistor Count?12.0B12.0B12.0B7.2B8.0B5.2B8.9B8.9B
Process Tech14nm16nm16nm16nm16nm28nm28nm28nm28nm
MSRP (current)$999$1200$699$1,200$599$999$499$649$549


AMD의 가장 최신 기술로 개발된 신형 GPU 라데온 베가 프론티어 에디션 16GB. 스펙은 기존 R9 Fury X와 비슷하며(4096 코어) 동작 클럭 상승, 16GB 2048-bit HBM2 적용, 글로벌 파운드리 14나노 공정, TDP는 300와트, 가격은 999달러


베가 프론티어 에디션 외형


View Full Size


View Full Size


View Full Size


View Full Size




테스트 시스템



 PC Perspective GPU Testbed
ProcessorIntel Core i7-5960X Haswell-E
MotherboardASUS Rampage V Extreme X99
MemoryG.Skill Ripjaws 16GB DDR4-3200
StorageOCZ Agility 4 256GB (OS)
Adata SP610 500GB (games)
Power SupplyCorsair AX1500i 1500 watt
OSWindows 10 x64
DriversAMD: 17.6 (Vega)
NVIDIA: 382.53







Radeon Vega Frontier Edition 16GB (300W), Average FPS Comparisons, Dirt Rally
 GTX 1080 TiGTX 1080GTX 1070R9 Fury X
2560x1440-37%-11%+2%+15%
3840x2160-37%-5%  


더트 랠리 : 베가 프론티어 에디션은 지포스GTX 1070 급 성능





Radeon Vega Frontier Edition 16GB (300W), Average FPS Comparisons, Fallout 4
 GTX 1080 TiGTX 1080GTX 1070R9 Fury X
2560x1440-32%-8%+10%+27%
3840x2160-39%-13%  


폴아웃4 : 베가 프론티어 에디션은 지포스GTX 1070 보다 10% 높은 성능





Radeon Vega Frontier Edition 16GB (300W), Average FPS Comparisons, Grand Theft Auto V
 GTX 1080 TiGTX 1080GTX 1070R9 Fury X
2560x1440-33%-31%-19%+16%
3840x2160-50%-31%  


GTA5 : 베가 프론티어 에디션은 지포스GTX 1070 보다 -19% 낮은 성능





Radeon Vega Frontier Edition 16GB (300W), Average FPS Comparisons, Hitman
 GTX 1080 TiGTX 1080GTX 1070R9 Fury X
2560x1440-30%-14%+32%+27%
3840x2160-33%-16%  


히트맨 : 베가 프론티어 에디션은 지포스GTX 1070 보다 32% 높은 성능





Radeon Vega Frontier Edition 16GB (300W), Average FPS Comparisons, Rise of the Tomb Raider
 GTX 1080 TiGTX 1080GTX 1070R9 Fury X
2560x1440-38%-13%+11%+46%
3840x2160-38%-14%  


톰레이더 : 베가 프론티어 에디션은 지포스GTX 1070 보다 11% 높은 성능





Radeon Vega Frontier Edition 16GB (300W), Average FPS Comparisons, The Witcher 3
 GTX 1080 TiGTX 1080GTX 1070R9 Fury X
2560x1440-38%-17%+1%+16%
3840x2160-40%-17%  


위처3 : 베가 프론티어 에디션은 지포스GTX 1070 급  성능


전력 소모

View Full Size


베가 프론티어 에디션의 전력소모는 테스트 카드 중 단연 1위

3DMark, Unigine Heaven

Let's look at a set of tests from more standard benchmarks like Unigine Heaven and the new 3DMark benchmark. 

I consider these tests to be somewhat of a "best case" for all the cards in our comparison.  We aren't using our frame capture system, we aren't measuring frame latency, nothing like that; I think this should give you an idea of graphics performance if each vendor had the best result for each game.

View Full Size


View Full Size


Looking at the synthetic benchmarks, we start with the classic 3DMark Fire Strike tests. The Extreme run shows a pretty reasonable performance edge from the Vega FE to the GTX 1080 of 6%, the closest gap we have seen so far. The Vega FE is even 14% faster than the GTX 1070 here. Looking at the Ultra preset, the GTX 1080 only has a 3% advantage.

View Full Size


Unigine Heaven continues to be a sore spot for Radeon graphics cards. With a score of 64.7 FPS, the Vega Frontier Edition is only 12% faster than the Fury X! That also leaves it 8.5% slower than the GTX 1070…



3DS Max Viewset (3dsmax-05)


View Full Size


The 3dsmax-05 viewset was created from traces of the graphics workload generated by 3ds Max 2016 using the default Nitrous DX11 driver.

The models for this viewset came from the SPECapc for 3ds Max 2015 benchmark and other sources. In order to best approximate real-world use cases, several tests incorporate multiple viewsets on screen, each using a different rendering method. The styles of rendering in the viewset reflect those most commonly used in major markets, including realistic, shaded and wireframe. Some lesser-used but interesting rendering modes such as facets, graphite and clay are also incorporated. The animations in the viewset are a combination of model spin and camera fly-through, depending on the model.


View Full Size


The Vega FE has a good showing on this viewset, producing a score 92% higher than the Radeon Pro Duo (single GPU) and coming within 20% of the Titan Xp.

CATIA Viewset (Catia-04)


View Full Size


The catia-04 viewset was created from traces of the graphics workload generated by the CATIA V6 R2012 application from Dassault Systemes. Model sizes range from 5.1 to 21 million vertices.

The viewset includes numerous rendering modes supported by the application, including wireframe, anti-aliasing, shaded, shaded with edges, depth of field, and ambient occlusion


View Full Size


The two Radeon cards scale well with Catia, with the Vega Frontier Edition getting a win over the Titan Xp by 25% or so. But notice that the Quadro P5000, which is essentially identical hardware to the GTX 1080, is noticeably faster than the Titan Xp, indicate work and improvement from the Quadro driver stack.

Creo viewset (Creo-01)


View Full Size


The creo-01 viewset was created from traces of the graphics workload generated by the Creo 2™ application from PTC. Model sizes range from 20 to 48 million vertices.

The viewset includes numerous rendering modes supported by the application, including wireframe, anti-aliasing, shaded, shaded with edges, and shaded reflection modes.


View Full Size


Creo uses a super high poly count model for a portion of its workload and the Radeon Vega Frontier Edition does exceedingly well, besting the Titan Xp by 48%.

Energy Viewset (Energy-01)


View Full Size


The energy-01 viewset is representative of a typical volume rendering application in the seismic and oil and gas fields. Similar to medical imaging such as MRI or CT, geophysical surveys generate image slices through the subsurface that are built into a 3D grid. Volume rendering provides a 2D projection of this 3D volumetric grid for further analysis and interpretation.

At every frame, depending on the viewer position, a series of coplanar slices aligned with the viewing angle are computed on the CPU and then sent to the graphics hardware for texturing and further calculations such as transfer function lookup, lighting and clipping to reveal internal structures. Finally, the slices are blended together before the image is displayed.


View Full Size


The Energy viewset gives the Radeon Vega FE another win over the Titan Xp as well as the Quadro P5000.

Maya viewset (maya-04)


View Full Size


The maya-04 viewset was created from traces of the graphics workload generated by the Maya 2013 application from Autodesk. Model size is 727,500 vertices.

The viewset includes numerous rendering modes supported by the application, including shaded mode, ambient occlusion, multi-sample anti aliasing, and transparency.


View Full Size


The Maya workload shows good scaling from the single GPU Radeon Pro duo test to the Vega FE (75%) though the Titan Xp still has a significant advantage over the rest of the field.

Medical Viewset (Medical-01)


View Full Size


The medical-01 viewset is representative of a typical volume rendering application that renders a 2D projection of a 3D volumetric grid. A typical 3D grid in this viewset is a group of 3D slices acquired by a scanner (such as CT or MRI).

At every frame, depending on the viewer position, a series of coplanar slices aligned with the viewing angle are computed on the CPU and then sent to the graphics hardware for texturing and further calculations, such as transfer function lookup, lighting and clipping to reveal internal structures. Finally, the slices are blended together before the image is displayed.


View Full Size


Using the Medical viewset swaps the win back in favor of AMD, with the Radeon Vega FE card providing a 40% advantage over the Titan Xp.

Showcase Viewset (showcase-01)


View Full Size


The showcase-01 viewset was created from traces of Autodesk’s Showcase 2013 application. The model used in the viewset consists of 8 million vertices.

The viewset is the first viewset in SPECviewperf to feature DX rendering. Rendering modes included in the viewset include shading, projected shadows, and self-shadows.


View Full Size


The Showcase viewset utilizes DX11 for rendering and the advantages that the GeForce products offer here stand out. The Titan Xp is 47% faster than the Vega FE.

Siemens NX (snx-02)


View Full Size


The snx-02 viewset was created from traces of the graphics workload generated by the NX 8.0 application from Siemens PLM. Model sizes range from 7.15 to 8.45 million vertices.


View Full Size


The scores for the Radeon Pro Duo and the Titan Xp, in contrast with the scores from the Quadro and Vega cards, indicate there is a significant software difference between these driver configurations. The Vega Frontier Edition does impressively well, coming within 30% of the Quadro P5000.

Solidworks viewset (sw-03)


View Full Size


The sw-03 viewset was created from traces of Dassault Systemes’ SolidWorks 2013 SP1 application. Models used in the viewset range in size from 2.1 to 21 million vertices.

The viewset includes numerous rendering modes supported by the application, including shaded mode, shaded with edges, ambient occlusion, shaders, and environment maps.


View Full Size


Finally, the Solidworks viewset has the Radeon Vega FE well ahead of the Titan Xp (73%) but falling shore of all three of the Quadro family of products.

LuxMark 3.1


View Full Size


GPGPU compute performance is a big part of any modern GPU design, especially in the workstation environment. LuxMark is a long-standing OpenCL benchmark, based on the LuxRender engine and provides a good look at how different GPU architectures compare in typical OpenCL workloads. Today we are testing our field of graphics cards in the most compute intensive scene, Hotel.


View Full Size


With a score of 4690, the Radeon Vega Frontier Edition performs 41% faster than the Quadro P5000 (GTX 1080 equivalent) and than the Radeon Pro Duo running on a single GPU (essentially a Fury X). That’s a big shift from the gaming results we just went through on the preceding pages. NVIDIA’s Titan Xp though was able to bring a score of 5800, giving it a 23% advantage over AMD’s middle-level pro-sumer graphics offering.

Cinebench R15 OpenGL

The performance depends on various factors, such as the GPU processor on your hardware, on the drivers used. The graphics card has to display a huge amount of geometry (nearly 1 million polygons) and textures, as well as a variety of effects, such as environments, bump maps, transparency, lighting and more to evaluate the performance across different disciplines and give a good average overview of the capabilities of your graphics hardware. The result is measured in frames per second (fps). The higher the number, the faster your graphics card is.


View Full Size


We quickly tossed in CineBench R15 as an OpenGL rending test and the Radeon Vega Frontier Edition does very well, scoring 151.85 FPS compared to the Titan Xp at 144.19 FPS. 

We do plan to run a more extensive set of professional application tests as time permits. For this review, we focused most of our available time on the gaming angle of this architecture.


출처 - https://www.pcper.com


AMD의 신형 라데온 베가 프론티어 에디션은 16GB 용량의 HBM2 기술까지 적용했으나 성능은 엔비디아의 지포스 1070 ~ 1080 중간에 위치하며 1070에 가까운 성능이다. TDP는 무려 300와트로 매우 낮은 와트당 성능을 나타내며 엔비디아와 AMD 간의 GPU 기술 격차가 더욱 확대되고 있다.

반응형
Posted by 랩터 인터내셔널



마침내 등장한 인텔 스카이레이크X 7900X, 7820X, 7800X, 카비레이크X 7740 테스트


출처 - http://www.anandtech.com


Skylake-X Processors (Low Core Count Chips)
 Core i7-7800XCore i7-7820XCore i9-7900X
Cores / Threads6/128/1610/20
Base Clock3.5 GHz3.6 GHz3.3 GHz
Turbo Clock4.0 GHz4.3 GHz4.3 GHz
TurboMax ClockN/A4.5 GHz4.5 GHz
L38.25 MB11 MB13.75 MB
PCIe Lanes2844
Memory Channels4
Memory FreqDDR4-2400DDR4-2666
TDP140W
Price$389$599$999




신형 스카이레이크X 스펙표

7800X : 6코어 12스레드 / 베이스 클럭 3.5 GHz / 부스트 클럭 4.0 GHz / L3 8.25 MB / DDR4-2400

7820X : 8코어 16스레드 / 베이스 클럭 3.6 GHz / 최대 부스트 클럭 4.5 GHz / L3 11 MB / DDR4-2666

7900X : 10코어 20스레드 / 베이스 클럭 3.3 GHz / 최대 부스트 클럭 4.5 GHz / L3 13.75 MB / DDR4-2666

TDP : 140W 공통

PCIe 레인수 : 7800X / 7820X = 28레인, 7900X : 44레인

가격 : 7800X - 389달러 / 7820X - 599달러 / 7900X - 999달러




신형 프로세서 패키지


[ 테스트 시스템 ]


Test Setup
Processor Intel Core i9-7900X (10C/20T, 140W, 3.3 GHz)
Intel Core i7-7820X (8C/20T, 140W, 3.6 GHz)
Intel Core i7-7800X (6C/12T, 140W, 3.5 GHz)
Intel Core i7-7740X (4C/8T, 112W, 4.3 GHz)
Intel Core i5-7640X (4C/4T, 112W, 4.0 GHz)
Motherboards ASRock X299 Taichi
MSI X299 Gaming Pro Carbon
GIGABYTE X299 Gaming 9
Cooling Thermalright TRUE Copper
Silverstone AR10-115XS
Power Supply Corsair AX760i PSU
Corsair AX1200i Platinum PSU
Memory Corsair Vengeance Pro DDR4-2666 4x8 GB or
G.Skill Ripjaws 4 DDR4-2666 C15 4x8GB or
TeamGroup NightHawk RGB DDR4-3000
Video Cards MSI GTX 1080 Gaming 8GB
ASUS GTX 1060 Strix
Sapphire R9 Fury 4GB
Sapphire RX 480 8GB
Sapphire RX 460 2GB
Hard Drive Crucial MX200 1TB
Optical Drive LG GH22NS50
Case Open Test Bed
Operating System Windows 10 Pro 64-bit



PDF Opening

First up is a self-penned test using a monstrous PDF we once received in advance of attending an event. While the PDF was only a single page, it had so many high-quality layers embedded it was taking north of 15 seconds to open and to gain control on the mid-range notebook I was using at the time. This put it as a great candidate for our 'let's open an obnoxious PDF' test. Here we use Adobe Reader DC, and disable all the update functionality within. The benchmark sets the screen to 1080p, opens the PDF to in fit-to-screen mode, and measures the time from sending the command to open the PDF until it is fully displayed and the user can take control of the software again. The test is repeated ten times, and the average time taken. Results are in milliseconds.

System: PDF Opening with Adobe Reader DC

The extra frequency of the new processors is helping when it comes to opening our monster PDF, but also the extra L2 cache is likely having an effect as well.

FCAT Processing

One of the more interesting workloads that has crossed our desks in recent quarters is FCAT - the tool we use to measure stuttering in gaming due to dropped or runt frames. The FCAT process requires enabling a color-based overlay onto a game, recording the gameplay, and then parsing the video file through the analysis software. The software is mostly single-threaded, however because the video is basically in a raw format, the file size is large and requires moving a lot of data around. For our test, we take a 90-second clip of the Rise of the Tomb Raider benchmark running on a GTX 980 Ti at 1440p, which comes in around 21 GB, and measure the time it takes to process through the visual analysis tool.

System: FCAT Processing ROTR 1440p GTX1080 Data

FCAT takes in a frame, processes it and dumps it, all on a single thread. The quicker you get through the workload the better, and frequency is supreme, hence we get the 7820X followed by the 7800X then the 7900X. Even though the 7900X has the higher turbo here, the results are with the margin expected.

3D Particle Movement v2.1

This is the latest version of the self-penned 3DPM benchmark. The goal of 3DPM is to simulate semi-optimized scientific algorithms taken directly from my doctorate thesis. Version 2.1 improves over 2.0 by passing the main particle structs by reference rather than by value, and decreasing the amount of double->float->double recasts the compiler was adding in. It affords a ~25% speed-up over v2.0, which means new data.

System: 3D Particle Movement v2.1

Give 3DPMv2.1 some cores, and it will show you the world / some numbers. The 1800X and 6950X were gunning for top spot, but the extra frequency of the 7900X wins here.

DigiCortex 1.20

Despite being a couple of years old, the DigiCortex software is a pet project for the visualization of neuron and synapse activity in the brain. The software comes with a variety of benchmark modes, and we take the small benchmark which runs a 32k neuron/1.8B synapse simulation. The results on the output are given as a fraction of whether the system can simulate in real-time, so anything above a value of one is suitable for real-time work. The benchmark offers a 'no firing synapse' mode, which in essence detects DRAM and bus speed, however we take the firing mode which adds CPU work with every firing.

System: DigiCortex 1.20 (32k Neuron, 1.8B Synapse)

DigiCortex loves a bit of memory, although when speaking with the developer, there can some instances where the beast needs to be fed. Losing the inclusive L3 might be a factor here, especially with the 7800X all the way down.

Agisoft Photoscan 1.0

Photoscan stays in our benchmark suite from the previous version, however now we are running on Windows 10 so features such as Speed Shift on the latest processors come into play. The concept of Photoscan is translating many 2D images into a 3D model - so the more detailed the images, and the more you have, the better the model. The algorithm has four stages, some single threaded and some multi-threaded, along with some cache/memory dependency in there as well. For some of the more variable threaded workload, features such as Speed Shift and XFR will be able to take advantage of CPU stalls or downtime, giving sizeable speedups on newer microarchitectures.

System: Agisoft Photoscan 1.0 Total Time

Photoscan is a mixed bag of operations, going through single thread sections to multithread and a range of cache/memory bandwidth requirepements. There's not much difference between thw 10 core and the 8 core, but the frequency helps against Broadwell-E.


Corona 1.3

Corona is a standalone package designed to assist software like 3ds Max and Maya with photorealism via ray tracing. It's simple - shoot rays, get pixels. OK, it's more complicated than that, but the benchmark renders a fixed scene six times and offers results in terms of time and rays per second. The official benchmark tables list user submitted results in terms of time, however I feel rays per second is a better metric (in general, scores where higher is better seem to be easier to explain anyway). Corona likes to pile on the threads, so the results end up being very staggered based on thread count.

Rendering: Corona Photorealism

Blender 2.78

For a render that has been around for what seems like ages, Blender is still a highly popular tool. We managed to wrap up a standard workload into the February 5 nightly build of Blender and measure the time it takes to render the first frame of the scene. Being one of the bigger open source tools out there, it means both AMD and Intel work actively to help improve the codebase, for better or for worse on their own/each other's microarchitecture.

Rendering: Blender 2.78

LuxMark

As a synthetic, LuxMark might come across as somewhat arbitrary as a renderer, given that it's mainly used to test GPUs, but it does offer both an OpenCL and a standard C++ mode. In this instance, aside from seeing the comparison in each coding mode for cores and IPC, we also get to see the difference in performance moving from a C++ based code-stack to an OpenCL one with a CPU as the main host.

Rendering: LuxMark CPU C++

POV-Ray 3.7b3

Another regular benchmark in most suites, POV-Ray is another ray-tracer but has been around for many years. It just so happens that during the run up to AMD's Ryzen launch, the code base started to get active again with developers making changes to the code and pushing out updates. Our version and benchmarking started just before that was happening, but given time we will see where the POV-Ray code ends up and adjust in due course.

Rendering: POV-Ray 3.7

Cinebench R15

The latest version of CineBench has also become one of those 'used everywhere' benchmarks, particularly as an indicator of single thread performance. High IPC and high frequency gives performance in ST, whereas having good scaling and many cores is where the MT test wins out.

Rendering: CineBench 15 MultiThreaded

Rendering: CineBench 15 SingleThreaded


SunSpider 1.0.2

The oldest web-based benchmark in this portion of our test is SunSpider. This is a very basic javascript algorithm tool, and ends up being more a measure of IPC and latency than anything else, with most high-performance CPUs scoring around about the same. The basic test is looped 10 times and the average taken. We run the basic test 4 times.

Web: SunSpider on Chrome 56

Sunspider goes after peak frequency most of the time, althoguh there is some variation as it moves into basically becoming a legacy test.

Mozilla Kraken 1.1

Kraken is another Javascript based benchmark, using the same test harness as SunSpider, but focusing on more stringent real-world use cases and libraries, such as audio processing and image filters. Again, the basic test is looped ten times, and we run the basic test four times.

Web: Mozilla Kraken 1.1 on Chrome 56

Kraken is more of an intense attack on JS, and still regularly sorts by IPC and frequency.

Google Octane 2.0

Along with Mozilla, as Google is a major browser developer, having peak JS performance is typically a critical asset when comparing against the other OS developers. In the same way that SunSpider is a very early JS benchmark, and Kraken is a bit newer, Octane aims to be more relevant to real workloads, especially in power constrained devices such as smartphones and tablets.

Web: Google Octane 2.0 on Chrome 56

Octane seems to be an optimization target, and with the new Skylake-X it shows.

WebXPRT 2015

While the previous three benchmarks do calculations in the background and represent a score, WebXPRT is designed to be a better interpretation of visual workloads that a professional user might have, such as browser based applications, graphing, image editing, sort/analysis, scientific analysis and financial tools.

Web: WebXPRT 15 on Chrome 56


HandBrake H264 and HEVC

As mentioned above, video transcoding (both encode and decode) is a hot topic in performance metrics as more and more content is being created. First consideration is the standard in which the video is encoded, which can be lossless or lossy, trade performance for file-size, trade quality for file-size, or all of the above can increase encoding rates to help accelerate decoding rates. Alongside Google's favorite codec, VP9, there are two others that are taking hold: H264, the older codec, is practically everywhere and is designed to be optimized for 1080p video, and HEVC (or H265) that is aimed to provide the same quality as H264 but at a lower file-size (or better quality for the same size). HEVC is important as 4K is streamed over the air, meaning less bits need to be transferred for the same quality content.

Handbrake is a favored tool for transcoding, and so our test regime takes care of three areas.

Low Quality/Resolution H264: He we transcode a 640x266 H264 rip of a 2 hour film, and change the encoding from Main profile to High profile, using the very-fast preset.

Encoding: Handbrake H264 (LQ)

More cores, more frequency, more IPC, more fun: the Core i9-7900X wins here, and even the i7-7800X wins out against the Core i7-6900K.

High Quality/Resolution H264: A similar test, but this time we take a ten-minute double 4K (3840x4320) file running at 60 Hz and transcode from Main to High, using the very-fast preset.

Encoding: Handbrake H264 (HQ)

Moving into HQ mode means making the job more parallel, so the higher core counts stay at the top of the chart.

HEVC Test: Using the same video in HQ, we change the resolution and codec of the original video from 4K60 in H264 into 4K60 HEVC.

Encoding: Handbrake HEVC (4K)

WinRAR 5.40

For the 2017 test suite, we move to the latest version of WinRAR in our compression test. WinRAR in some quarters is more user friendly that 7-Zip, hence its inclusion. Rather than use a benchmark mode as we did with 7-Zip, here we take a set of files representative of a generic stack (33 video files in 1.37 GB, 2834 smaller website files in 370 folders in 150 MB) of compressible and incompressible formats. The results shown are the time taken to encode the file. Due to DRAM caching, we run the test 10 times and take the average of the last five runs when the benchmark is in a steady state.

Encoding: WinRAR 5.40

WinRAR loves having access to all the caches as much as possible, to prefetch and store data as needed. The Skylake-X chips fall back a bit here, even with DDR4-2666 support. The Core i7-7800X uses DDR4-2400 memory, so puts it further behind. Interesting didn't realise that the lower core count Broadwell-E chips were affected so much by this test, and the higher core count Ivy Bridge-E parts are faster here.

AES Encoding

Algorithms using AES coding have spread far and wide as a ubiquitous tool for encryption. Again, this is another CPU limited test, and modern CPUs have special AES pathways to accelerate their performance. We often see scaling in both frequency and cores with this benchmark. We use the latest version of TrueCrypt and run its benchmark mode over 1GB of in-DRAM data. Results shown are the GB/s average of encryption and decryption.

Encoding: AES

7-Zip

One of the freeware compression tools that offers good scaling performance between processors is 7-Zip. It runs under an open-source licence, is fast, and easy to use tool for power users. We run the benchmark mode via the command line for four loops and take the output score.

Encoding: 7-Zip


Chromium Compile (v56)

Our new compilation test uses Windows 10 Pro, VS Community 2015.3 with the Win10 SDK to combile a nightly build of Chromium. We've fixed the test for a build in late March 2017, and we run a fresh full compile in our test. Compilation is the typical example given of a variable threaded workload - some of the compile and linking is linear, whereas other parts are multithreaded.

Office: Chromium Compile (v56)

PCMark8

Despite originally coming out in 2008/2009, Futuremark has maintained PCMark8 to remain relevant in 2017. On the scale of complicated tasks, PCMark focuses more on the low-to-mid range of professional workloads, making it a good indicator for what people consider 'office' work. We run the benchmark from the commandline in 'conventional' mode, meaning C++ over OpenCL, to remove the graphics card from the equation and focus purely on the CPU. PCMark8 offers Home, Work and Creative workloads, with some software tests shared and others unique to each benchmark set.

Office: PCMark8 Creative (non-OpenCL)

Office: PCMark8 Home (non-OpenCL)

Office: PCMark8 Work (non-OpenCL)

SYSmark 2014 SE

SYSmark is developed by Bapco, a consortium of industry CPU companies. The goal of SYSmark is to take stripped down versions of popular software, such as Photoshop and Onenote, and measure how long it takes to process certain tasks within that software. The end result is a score for each of the three segments (Office, Media, Data) as well as an overall score. Here a reference system (Core i3-6100, 4GB DDR3, 256GB SSD, Integrated HD 530 graphics) is used to provide a baseline score of 1000 in each test.

A note on context for these numbers. AMD left Bapco in the last two years, due to differences of opinion on how the benchmarking suites were chosen and AMD believed the tests are angled towards Intel processors and had optimizations to show bigger differences than what AMD felt was present. The following benchmarks are provided as data, but the conflict of opinion between the two companies on the validity of the benchmark is provided as context for the following numbers.

Office: SYSMark 2014 SE (Overall)


Benchmarking Performance: CPU Legacy Tests

Our legacy tests represent benchmarks that were once at the height of their time. Some of these are industry standard synthetics, and we have data going back over 10 years. All of the data here has been rerun on Windows 10, and we plan to go back several generations of components to see how performance has evolved.

Legacy: CineBench 11.5 MultiThreadedLegacy: CineBench 11.5 Single ThreadedLegacy: 3DPM v1 MultiThreadedLegacy: 3DPM v1 Single ThreadedLegacy: CineBench 10 MultiThreadedLegacy: CineBench 10 Single ThreadedLegacy: x264 3.0 Pass 1Legacy: x264 3.0 Pass 2


Office: Chromium Compile (v56)


Parts and Performance

The three Skylake-X cores launched today are the Core i9-7900X, the Core i7-7820X, and the Core i7-7800X: 10, 8 and 6 core parts respectively using the updated Skylake-SP core, the new cache topology, and the new mesh. With some of the tests benefitting from the new features and others taking a backseat, we had a wide range of results. The most poignant of which should be when we pit this generation 10-core over last generations 10-core. The Core i9-7900X has a frequency advantage, an IPC advantage, and a significant price advantage, which should make for an easy steamrolling.

Rendering: CineBench 15 MultiThreaded

Rendering: Blender 2.78

Encoding: WinRAR 5.40

Total Package Power

In the end, this is what we get: aside from some tests that are L3 memory sensitive such as DigiCortex, WinRAR, and some of the PCMark8 tests, the Core i9-7900X wins every CPU test. For anyone who was unsure about getting the 10-core on the last generation on a compute basis, this new one seems to be the one to get.


출처 - http://www.anandtech.com


최신 스카이레이크-X 메인보드와 바이오스에 문제가 있기 때문에 성능은 추후 더 향상될 것.

반응형
Posted by 랩터 인터내셔널

title.jpg


게이밍 환경에서 인텔 VS AMD CPU 성능 비교 / https://www.techpowerup.com



AMD 선수 : 라이젠 1800X - 1700X - 1700 - 1600X - 1600 - 1500X - 1400

인텔 선수 : 코어 7700K - 6700K - 7600K - 7500 - 7400 - 7100 - G4560


[ 테스트 시스템 ]


Test System
Motherboard:
(all Ryzen)
MSI X370 XPower Gaming Titanium
AMD X370, BIOS v1.6
Motherboard:
(all Intel)
ASUS Maximus VIII Hero
Intel Z170, BIOS 3401
Memory:2x 8 GB G.SKILL Flare X DDR4
DDR4-3200 14-14-14-34
Graphics: NVIDIA GeForce GTX 1080
Storage:Crucial MX300 750 GB
Power Supply:Seasonic SS-860XP
Software:Windows 10 64-bit Creators Update
All updates installed
Drivers:NVIDIA GeForce 382.05 WHQL




















테스트.1


720P 환경에서 CPU 성능 확인, 이 테스트는 게이밍 내에서 GPU 보다 CPU 성능을 중점적으로 확인할때 사용한다.


결과 : 인텔의 코어i7 - i5 모델들이 AMD 라이젠 시리즈를 확실하게 앞서고 있으며 인텔의 i5 모델들이 AMD의 최상위 1800X를 대부분 넘어서고 있다.























테스트.2


일반적인 1920x1080 / 2560x1440 / 4K 게이밍 환경 테스트

결과 : AMD의 모든 라이젠 시리즈는 일부분을 제외하고 전체적으로 인텔의 코어i5 7400과 코어i5 7500 보다 떨어지는 성능을 나타낸다.


벤치마크 데이터 출처 - https://www.techpowerup.com

반응형
Posted by 랩터 인터내셔널

모바일AP 및 프로세서 벤치마크 정보를 공유하는 긱벤치 브라우저 사이트(http://browser.primatelabs.com)에 인텔의 신형 프로세서 스카이레이크-X 7800X(6코어 12스레드) 와 스카이레이크-X 7900X(10코어 20스레드)의 성능이 공개됐다.



먼저 7800X (6코어 12스레드) VS AMD 라이젠 1800X (8코어 16스레드)의 비교


인텔 7800X (6코어 12스레드) 싱글 점수 : 6134 / 멀티 점수 : 37344

AMD 라이젠 1800X (8코어 16스레드) 싱글 점수 : 4378 / 멀티점수 : 34457


인텔의 신형 6코어 7800X 모델이 AMD의 8코어 라이젠 1800X를 압도하고 있다.



7900X (10코어 20스레드) VS AMD 라이젠 1800X (8코어 16스레드)의 비교


인텔 7900X (10코어 20스레드) 싱글 점수 : 6158 / 멀티 점수 : 57806

AMD 라이젠 1800X (8코어 16스레드) 싱글 점수 : 4378 / 멀티점수 : 34457


인텔의 신형 7900X가 AMD 라이젠 1800X와 엄청난 성능차이로 압도하고 있다.

반응형
Posted by 랩터 인터내셔널
Jason Cross, Adam Patrick Murray | Greenbot
지난 해, Greenbot은 삼성 갤럭시 S7, LG V20, 아이폰 7을 누르고 구글 픽셀을 스마트폰 카메라 1위로 선정했다. 그리고 지난 달, 픽셀은 LG G6를 상대로 방어전을 치렀으나 패배하고 말았다.

이제 새로운 도전자가 LG의 왕좌에 도전하려고 한다. 삼성 갤럭시 S8은 지난 해 모델인 갤럭시 S7과 카메라 사양이 동일해 보이지만, 표면상의 메가픽셀 수치에 속아서는 안 된다. 갤럭시 S8은 새로운 센서, 광학 장치, 이미지 처리 알고리즘을 갖춘 강력한 도전자다.

삼성의 최신 제품인 갤럭시 S8이 LG의 아성을 무너뜨릴 수 있을까?

테스트 항목
시작에 앞서 사양을 간단히 살펴보는 것은 어떨까? 갤럭시 S8의 메인 후면 카메라는 듀얼 픽셀 자동 초점이 적용된 소니 IMX33을 사용한다. 해상도는 1,200픽셀 f/1.7 렌즈를 갖추었다. 광학 이미지 안정화 기능도 있다. LG G6는 1개의 표준 카메라와 1개의 광각카메라로 2개의 후면 카메라를 탑재했다. 둘 다 동일한 1,200픽셀의 소니 IMX258 센서를 사용한다. 테스트에서는 광학 이미지 안정화 기능과 뛰어난 f/1.7 조리개를 가진 표준 카메라를 가장 신경썼다. 일단, 광각 렌즈는 OIS가 없고 조리개는 f/2.4이다.

사양만 보면 삼성의 손을 들어주고 싶다. 조리개가 더 넓고 센서가 더 커서 저조도 환경에서 더 나은 성능을 발휘하고 초점도 더욱 신속하게 잡을 것이다.

테스트는 대다수 사용자가 쓰는 자동 모드로 진행했다. 즉, 주머니에서 바로 꺼낸 상태로 기본 앱을 사용했으며 HDR은 자동으로 설정되어 있었다. 휴대전화가 전체 해상도 미만으로 기본 설정되어 있는 경우 수정하기는 했지만 “기성 제품” 경험 그대로이다.

이번 리뷰에서는 색상, 선명도, 다이내믹 레인지라는 3가지 영역에 대해 카메라를 심도 깊게 살펴볼 것이다. 두 카메라로 각기 수십 장의 사진을 촬영했으며 여기에서는 대표적인 샘플만 제시한다.

이 리뷰는 카메라 경험 전체를 포괄적으로 다루지 않았으며, 3개 주요 영역에서 최종 화질을 살펴본다. 훌륭한 스마트폰 카메라를 결정하는 요소는 많다. 카메라 앱을 불러오는 시간과 사진 촬영 준비 시간(“주머니부터 사진까지” 시간), 셔터 지연, 촬영간 지연 속도, 연사 속도, 카메라 앱 인터페이스와 기능, 비디오 기능이나 화질 또는 전면 카메라는 이 리뷰에서 다루지 않았다.

색상 품질
휴대전화로 촬영한 사진의 색상 화질을 점검하면서는 정확도, 선명함, 카메라의 색 온도 균형을 살펴보았다.

SFO의 날씨는 흐렸으며 갤럭시 S8에서 삼성의 전형적인 과채도 현상이 줄어들었다는 점은 좋았지만 이미지의 파란색이 너무 짙다. G6는 색 온도가 훨씬 정확하다. 이는 삼성의 중대한 약점이며 여기에서의 색조는 일반적인 “감상자 취향” 화이트 밸런스를 넘어선다.

갤럭시 S8은 채도가 과하지 않지만, 화이트 밸런스는 정확하지 않다.


G6는 반대로 정확한 색상 밸런스를 전달한다.


다음 사진이 어렵다. 테이블에서 뿜어져 나온 빛은 파란색이지만 천장의 조명은 따뜻한 노란색이다. LG는 테이블 위뿐만이 아니라 검은색 카메라 렌즈에 반사된 것들의 명확한 대비를 정확하게 잡아냈다. 삼성은 파란색 테이블에 초점을 맞추고 이를 보정하려고 하다가 하얗게 바꾸면서 배경 조명을 주황색으로 바꿔버렸다.

삼성은 테이블 조명의 파란 빛을 보정하려다가 배경 색조까지 바꿔버렸다.


LG는 복합적인 조명 상황을 정확하게 잡아냈고, 푸른 빛이 도는 테이블과 따뜻한 배경 색을 모두 잘 표현했다.


마지막으로 풀밭에 놓인 이 주황색 콘을 살펴보자. 그렇다. GS8의 이미지가 더욱 만족스럽다고 생각할 수도 있지만, 여기에서는 정말로 모든 것이 “초록빛”이다. 조금 더 흐릿해 보일 수도 있지만 사실은 훨씬 정확하다. 그리고 풀밭을 확대하여 자세히 보면 컬러 배리에이션(Color Variation)이 심각함을 알 수 있다.

LG는 복합적인 조명 상황을 정확하게 잡아냈고, 푸른 빛이 도는 테이블과 따뜻한 배경 색을 모두 잘 표현했다.


삼성 S8의 색상 배합은 너무 과도하다. 실제 잔디밭은 이 정도로 파랗지 않다.

LG G6의 사진에 나타난 잔디밭 속 갈색과 노란색은 만족스럽거나 예쁘지는 않지만, 실제 색을 충실하게 반영한다.


삼성은 오랫동안 색 채도와 대비가 너무 제멋대로라는 지적을 받아 왔으며 이미지 처리가 개선된 것처럼 보이지만, 아직도 부족하다. 색상에 현실이 반영되지 않거나 장면의 화이트 밸런스를 잡아내지 못하는 경우가 너무 많다. 삼성은 자동 모드의 정확도를 높여야 하며 강렬한 색상은 “창의적인” 모드로 남겨 두어야 한다.

승자: LG가 크게 앞섬.

다음으로 선명도를 살펴보자.

선명도
선명도 측면에서는 이미지의 선명함(화질과 세부 디테일)뿐 아니라 이미지 처리된 인공물을 본다. 여기서는 작은 디테일과 미묘한 질감을 유지하면서 선명 과잉으로 인한 노이즈 또는 경계선이 두드러지지 않은 이미지를 원한다.

라스베거스에서 밝은 한낮에 촬영한 사진을 살펴보자.


두 휴대전화 사이의 디테일과 노이즈는 비슷한 수준이며 둘 다 훌륭하다.


이 클로즈업 사진을 보면 작은 창문 주변의 작은 슬레이트까지 쉽게 눈에 띈다.


밝은 실내 조명 아래서 촬영한 회로판의 클로즈업 사진은 어떨까?
 


여기에서는 갤럭시 S8이 우수했다. 자세히 보면 디테일과 작은 글씨까지 보인다. 기판에 인쇄된 텍스트도 더욱 선명하다.


갤럭시 S8이 확대한 사진에는 기판의 글씨와 선이 번지지 않고 또렷하게 드러나 있다.

매우 조도가 낮은 사진을 한번 살펴보자. 어두운 색조와 디테일은 좋은 기준이 된다.


이 사진의 조명은 매우 어둡게 조절한 상태다. 조도는 최종 사진 품질에 큰 영향을 준다.

경쟁이 되지 않는 수준이다. 갤럭시 S8의 대형 센서와 넓은 조리개가 모델과 피사체를 노출하기 위해 필요한 이점을 제공한다. G6는 절대로 갤럭시 S8을 따라갈 수 없었다. G6의 사진에서는 모델의 피부톤과 얼굴 디테일을 망쳤고 피사체가 완전히 파괴되었다.

G6가 갤럭시 S8을 따라갈 수 없는 수준이었다.


밝은 일광에서는 비슷하지만 어두워질수록 더욱 빛을 발하는 것은 갤럭시 S8이었다. 큰 센서와 많은 픽셀에 약간 더 밝은 조리개는 더 어두운 환경에서 디테일을 잡아내고 노이즈를 줄이는데 큰 이점이 된다.

승자: 갤럭시 S8이 특히 저조도 환경에서 더욱 선명하고 노이즈가 적은 사진을 촬영한다.

마지막으로 다이내믹 레인지 기능을 살펴보자.

다이내믹 레인지
여기에서는 색조 맵핑과 HDR을 포함하여 카메라가 포착하는 다이내믹 레인지(하나의 이미지에서 포착된 가장 밝은 영역과 가장 어두운 영역 사이의 차이)와 카메라가 이미지 노출을 선택하는 방식을 살펴본다.

AV 플러그를 찍은 첫 번째 사진에서는 테스트 전반에 걸쳐 스스로 반복되는 패턴이 보인다. 두 사진 모두 좋아 보이나, 갤럭시 S8의 사진이 약간 더 밝게 노출된다. 이 사진에서는 괜찮지만 다른 사진에서는 문제가 된다.


갤럭시 S8의 결과물은 나쁘지 않다. 세부적인 부분도 잘 표현돼 있다. 그러나 LG G6보다 조금 더 노출이 높다.


LG G6는 갤럭시 S8보다 한 두 단계 더 어둡지만, 모든 디테일이 잘 살아 있고, 색조도 균형잡혀있다.

다음 장면부터 노출이 높은 결과물이 나타나기 시작한다. 두 카메라 모두 전반적으로 만족스러운 이미지를 생성하지만, 사진 속 인물을 자세히 보면 머리카락, 소매, 테이블 오른쪽에 위치한 물체에서 나타나는 그림자와 대조 현상을 볼 수 있다.



G6는 밝은 부분에서의 디테일을 잃지 않으면서도 암부 노출을 적절히 조절했다.

무역 박람회의 조명 부스에서 촬영한 이 사진이 동적 범위를 차이를 잘 보여준다. 처음에는 두 사진 모두 좋아 보인다. 하지만 왼쪽의 둥근 조명들을 보자. 작은 지지대에 검은색 선이 보인다. 갤럭시 S8에서는 이 선이 완전히 사라져있다. 하지만 두 휴대전화 모두 천장의 어두운 영역에 있는 디테일을 잘 살렸다.

갤럭시 S8에서는 왼쪽의 조명기구 근처의 디테일이 완전히 날아가버렸다.


G6는 강한 빛 주변의 디테일도 잘 살렸고 어두운 부분도 잘 나타냈다.


두 휴대전화 모두 구형 제품보다는 뛰어나다. 그러나 갤럭시 S8은 이미지를 살짝 과노출하는 경향이 있고 기술이 요구되는 장면에서는 하이라이트가 두드러지곤 한다.

승자: LG G6가 적절히 노출된 장면의 가장 밝은 영역과 가장 어두운 영역을 잘 보존한다.

최종 승자: LG G6
LG G6가 여전히 스마트폰 카메라의 왕좌를 지켰다. 갤럭시 S8은 하드웨어 사양이 비슷한데도 불구하고, S7보다 조금 더 나은 사진을 내는 것이 특징이다. 그러나 삼성은 아직도 할 일이 많다. 기술이 요구되는 장면에서 적절한 화이트 밸런스를 찾는 것과 색상 채도 과잉이 결점으로 지적된다.

다시 한 번 말하지만 이번 리뷰는 스마트폰 카메라의 모든 측면을 측정한 것은 아니다. 카메라 성능을 측정할 때는 듀얼 카메라 모드, 특수 카메라 앱 모드와 기능, 셔터 지연 속도, 동영상 화질과 기능 등 많은 요소를 고려해야 한다. 하지만 대부분의 사람들이 즐겨 쓰는 자동 모드에서의 색상, 선명도, 다이내믹 레인지 색조를 자세히 살펴보면 LG가 한 발 앞서 있다는 결론이 나온다.

스마트폰 구매자라면 둘 중 어떤 휴대전화의 카메라에도 만족하리라 예상될 만큼 두 카메라의 품질은 뛰어나다. 그러나 삼성이 다음 제품으로 카메라 대전에서 승리하고 싶다면 조금 더 분발해야 할 것이다. editor@itworld.co.kr  

원문보기: http://www.itworld.co.kr/news/104744?page=0,1#csidx0bb8fef200556008d36010c601349e6

반응형
Posted by 랩터 인터내셔널

AMD Radeon RX 550 2GB Review - http://www.tomshardware.com



Radeon RX 550
Radeon R7 260X
Radeon RX 460
Shader Units
512896
896
ROPs16
16
16
GPUPolaris 12
Bonaire
Polaris 11
Transistors2.2 Billion
2.08 Billion
3 Billion
Memory Size
2GB2GB
2/4GB
Interface128-bit128-bit
128-bit
GPU Clock Rate (MHz)1100+
1100
1090
Memory Clock Rate (MHz)1750
1625
1750


라데온RX 550은 512 SP 16 ROP, 2.2B 트랜지스터, 128비트 메모리 인터페이스, 2GB 메모리 용량





MSI 라데온RX 550 GPU-Z, 상기 스펙 동일 및 1203MHz 코어 클럭, 메모리 1750Mhz 확인



[ 테스트 시스템 ]


Test Equipment and Environment
System
U.S.:
- Core i3-6320
- MSI Z270 Gaming Pro Carbon
- G.Skill F4-3200C14Q-32GTZ @ 2133 MT/s (16GB installed)
- 500GB Crucial MX200
- be quiet Dark Power Pro 11, 850W PSU
- Windows 10 Pro

Germany:
- Intel Core i3-6320
- MSI Z270 Gaming Pro Carbon
- G.Skill F4-3200C14Q-32GTZ @ 2133 MT/s (16GB installed)
- 1x 1TB Toshiba OCZ RD400 (M.2, System)
- 2x 960GB Toshiba OCZ TR150 (Storage, Images)
- be quiet Dark Power Pro 11, 850W PSU
- Windows 10 Pro (Creators Update)
Cooling
- Noctua NH-D15
- 5x Be Quiet! Silent Wings 3 PWM
- Thermal Grizzly Kryonaut (Used when Switching Coolers)
PC Case
- Lian Li PC-T70 with Extension Kit and Mods
- Configurations: Open Benchtable, Closed Case

Power Consumption Measurement
- Contact-free DC Measurement at PCIe Slot (Using a Riser Card)
- Contact-free DC Measurement at External Auxiliary Power Supply Cable
- Direct Voltage Measurement at Power Supply
- 2 x Rohde & Schwarz HMO 3054, 500MHz Digital Multi-Channel Oscilloscope with Storage Function
- 4 x Rohde & Schwarz HZO50 Current Probe (1mA - 30A, 100kHz, DC)
- 4 x Rohde & Schwarz HZ355 (10:1 Probes, 500MHz)
- 1 x Rohde & Schwarz HMC 8012 Digital Multimeter with Storage Function

Thermal Measurement
- 1 x Optris PI640 80Hz Infrared Camera + PI Connect
- Real-Time Infrared Monitoring and Recording

Noise Measurement
- NTI Audio M2211 (with Calibration File, Low Cut at 50Hz)
- Steinberg UR12 (with Phantom Power for Microphones)
- Creative X7, Smaart v.7
- Custom-Made Proprietary Measurement Chamber, 3.5 x 1.8 x 2.2m (L x D x H)
- Perpendicular to Center of Noise Source(s), Measurement Distance of 50cm
- Noise Level in dB(A) (Slow), Real-time Frequency Analyzer (RTA)
- Graphical Frequency Spectrum of Noise



fps


fps


fps


fps

fps


fps


[ 전력소모 ]


aHR0cDovL21lZGlhLmJlc3RvZm1pY3JvLmNvbS9N



출처 - http://www.tomshardware.com

반응형
Posted by 랩터 인터내셔널


AMD가 새로 발표한 RX 580 & RX 570 리뷰


AMD Radeon RX Series Specification Comparison
 AMD Radeon RX 580 (8GB)AMD Radeon RX 570AMD Radeon RX 480 (8GB)AMD Radeon RX 470
Stream Processors2304
(36 CUs)
2048
(32 CUs)
2304
(36 CUs)
2048
(32 CUs)
Texture Units144128144128
ROPs32323232
Base Clock1257MHz1168MHz1120MHz926MHz
Boost Clock1340MHz1244MHz1266MHz1206MHz
Memory Clock8 Gbps GDDR57Gbps GDDR58 Gbps GDDR56.6Gbps GDDR5
Memory Bus Width256-bit256-bit256-bit256-bit
VRAM8GB4GB8GB4GB
Transistor Count5.7B5.7B5.7B5.7B
Typical Board Power185W150W150W120W
Manufacturing ProcessGloFo 14nmGloFo 14nmGloFo 14nmGloFo 14nm
ArchitectureGCN 4GCN 4GCN 4GCN 4
GPUPolaris 10Polaris 10Polaris 10Polaris 10
Launch Date04/18/201704/18/201706/29/201608/04/2016
Launch Price$229$169$239$179



라데온 RX 580 & RX 570 시리즈는 기존 480 / 470 시리즈에서 스트림 프로세서, 텍스처 유닛, ROP 동일, 베이스 클럭 및 부스트 클럭 상승, 클럭 상승에 따른 TDP 증가 


가격조정 : 480 = 239달러, 580 = 229달러 / 470 = 179달러, 570 = 169달러


Spring 2017 GPU Pricing Comparison
AMDPriceNVIDIA
Radeon RX 580 (8GB)$229GeForce GTX 1060 (6GB)
Radeon RX 580 (4GB)$199 
Radeon RX 570$169/$179GeForce GTX 1060 3GB
 $129GeForce GTX 1050 Ti
Radeon RX 460$99/$104GeForce GTX 1050



라데온 VS 지포스 포지션 테이블, RX 580은 지포스 1060 (6GB) 상대, 570DMS 1060 (3GB) 모델 상대


PowerColor Red Devil Radeon RX 580

Sapphire Nitro+ Radeon RX 570


[ 테스트 시스템 ]


CPU:Intel Core i7-4960X @ 4.2GHz
Motherboard:ASRock Fatal1ty X79 Professional
Power Supply:Corsair AX1200i
Hard Disk: Samsung SSD 840 EVO (750GB)
Memory:G.Skill RipjawZ DDR3-1866 4 x 8GB (9-10-9-26)
Case:NZXT Phantom 630 Windowed Edition
Monitor:Asus PQ321
Video Cards:PowerColor Red Devil Radeon RX 580
Sapphire Nitro+ Radeon RX 570
AMD Radeon RX 480 (8GB)
AMD Radeon RX 470
AMD Radeon R9 380
AMD Radeon R7 370
NVIDIA GeForce GTX 1070 Founder's Edition
NVIDIA GeForce GTX 1060 Founder's Edition
NVIDIA GeForce GTX 1050 Ti
NVIDIA GeForce GTX 960
NVIDIA GeForce GTX 950
Video Drivers:NVIDIA Release 381.65
AMD Radeon Software Crimson Press Beta 17.10.1030
OS:Windows 10 Pro



Rise of the Tomb Raider

Starting things off in our benchmark suite is the built-in benchmark for Rise of the Tomb Raider, the latest iteration in the long-running action-adventure gaming series. One of the unique aspects of this benchmark is that it’s actually the average of 4 sub-benchmarks that fly through different environments, which keeps the benchmark from being too weighted towards a GPU’s performance characteristics under any one scene.

Rise of the Tomb Raider - 2560x1440 - Very High Quality (DX11)

Rise of the Tomb Raider - 1920x1080 - Very High Quality (DX11)

 

DiRT Rally

For the racing game in our benchmark suite we have Codemasters’ DiRT Rally. Codemasters continues to set the bar for graphical fidelity in racing games, delivering realistic looking environments with layered with additional graphical effects. Based on their in-house EGO engine, DiRT Rally includes a number of DirectCompute based compute shader effects, and while it’s not the most punishing game in our suite, it still takes a very good card to sustain the 60fps frame rate that driving games are best played at.

DiRT Rally - 2560x1440 - Ultra Quality

DiRT Rally - 1920x1080 - Ultra Quality

 


Ashes of the Singularity: Escalation

Sorely missing from our benchmark suite for quite some time have been RTSes, which don’t enjoy quite the popularity they once did. As a result Ashes holds a special place in our hearts, and that’s before we talk about the technical aspects. Based on developer Oxide Games’ Nitrous Engine, Ashes has been designed from the ground up for low-level APIs like DirectX 12. As a result of all of the games in our benchmark suite, this is the game making the best use of DirectX 12’s various features, from asynchronous compute to multi-threaded work submission and high batch counts. What we see can’t be extrapolated to all DirectX 12 games, but it gives us a very interesting look at what we might expect in the future.

Ashes of the Singularity - 2560x1440 - Extreme Quality (DX12)

Ashes of the Singularity - 1920x1080 - Extreme Quality (DX12)

 

Battlefield 4

One of the older games in our benchmark suite, DICE’s Battlefield 4 remains a staple of MP gaming. Even at its age, Battlefield 4 remained a challenging game in its own right, as very few mass market MP shooters push the envelope on graphics quality right now. As these benchmarks are from single player mode, based on our experiences our rule of thumb here is that multiplayer framerates will dip to half our single player framerates, which means a card needs to be able to average at least 60fps if it’s to be able to hold up in multiplayer.

Battlefield 4 - 2560x1440 - Ultra Quality

Battlefield 4 - 1920x1080 - Ultra Quality

 


Crysis 3

Still one of our most punishing benchmarks 3 years later, Crysis 3 needs no introduction. Crytek’s DX11 masterpiece, Crysis 3’s Very High settings still punish even the best of video cards, never mind the rest. Along with its high performance requirements, Crysis 3 is a rather balanced game in terms of power consumption and vendor optimizations. As a result it can give us a good look at how our video cards stack up on average, and later on in this article how power consumption plays out.

Crysis 3 - 2560x1440 - Very High Quality + FXAA

Crysis 3 - 1920x1080 - Very High Quality + FXAA

 

The Witcher 3

The third game in CD Projekt RED’s expansive RPG series, The Witcher 3 is our RPG benchmark of choice. Utilizing the company’s in-house engine, REDengine 3, The Witcher makes use of an array of DirectX 11 features, all of which combine to make the game both stunning and surprisingly GPU-intensive. Our benchmark is based on an action-heavy in-engine cutscene early in the game, and Hairworks is disabled.

The Witcher 3 - 2560x1440 - Ultra Quality (No Hairworks)

The Witcher 3 - 1920x1080 - Ultra Quality (No Hairworks)

 


Grand Theft Auto V

The latest edition of Rockstar’s venerable series of open world action games, Grand Theft Auto V was originally released to the last-gen consoles back in 2013. However thanks to a rather significant facelift for the current-gen consoles and PCs, along with the ability to greatly turn up rendering distances and add other features like MSAA and more realistic shadows, the end result is a game that is still among the most stressful of our benchmarks when all of its features are turned up. Furthermore, in a move rather uncharacteristic of most open world action games, Grand Theft Auto also includes a very comprehensive benchmark mode, giving us a great chance to look into the performance of an open world action game.

On a quick note about settings, as Grand Theft Auto V doesn't have pre-defined settings tiers, I want to quickly note what settings we're using. For "Very High" quality we have all of the primary graphics settings turned up to their highest setting, with the exception of grass, which is at its own very high setting. Meanwhile 4x MSAA is enabled for direct views and reflections. This setting also involves turning on some of the advanced redering features - the game's long shadows, high resolution shadows, and high definition flight streaming - but it not increasing the view distance any further.

Otherwise for "High" quality we take the same basic settings but turn off all MSAA, which significantly reduces the GPU rendering and VRAM requirements.

Grand Theft Auto V - 2560x1440 - Very High Quality

Grand Theft Auto V - 1920x1080 - Very High Quality

Grand Theft Auto V - 99th Percentile Framerate - 2560x1440 - Very High Quality

Grand Theft Auto V - 99th Percentile Framerate - 1920x1080 - Very High Quality


Compute

Shifting gears, let’s take a look at compute performance on new Radeon RX 500 cards.

Starting us off for our look at compute is LuxMark3.1, the latest version of the official benchmark of LuxRender. LuxRender’s GPU-accelerated rendering mode is an OpenCL based ray tracer that forms a part of the larger LuxRender suite. Ray tracing has become a stronghold for GPUs in recent years as ray tracing maps well to GPU pipelines, allowing artists to render scenes much more quickly than with CPUs alone.

Compute: LuxMark 3.1 - Hotel

For our second set of compute benchmarks we have CompuBench 1.5, the successor to CLBenchmark. CompuBench offers a wide array of different practical compute workloads, and we’ve decided to focus on face detection, optical flow modeling, and particle simulations.

Compute: CompuBench 1.5 - Face Detection

Compute: CompuBench 1.5 - Optical Flow

Compute: CompuBench 1.5 - Particle Simulation 64K

 



Idle Power Consumption


Load Power Consumption - Crysis 3



출처 - http://www.anandtech.com

반응형
Posted by 랩터 인터내셔널


Ryzen 5는 선행 발매된 Ryzen 7의 하위 브랜드로 ZEN 마이크로 아키텍처를 바탕으로 14nm FinFET 프로세스에서 제조된 CPU 제품군이다.


Ryzen 5의 라인업에는 6코어 CPU와 4코어 CPU가 혼재하는데 이번 테스트의 Ryzen 5 1600X는 6코어 12스레드 CPU, Ryzen 5 1500X는 4코어 8스레드 CPU로서 주된 스펙은 다음과 같다.



[표 1] Ryzen 5의 주요 사양
모델 넘버Ryzen 5 1600XRyzen 5 1500X
제조 프로세스14nm FinFET
마이크로 아키텍처ZEN
코어 수64
스레드 수128
CCX 구성3 + 32 + 2
L3 캐시16 MB16 MB
베이스 클럭3.6 GHz3.5 GHz
부스터 클럭4.0 GHz3.7 GHz
XFR 클럭4.1 GHz3.9 GHz
대응 메모리최대 DDR4-2666
TDP95 W65 W
순정 CPU쿨러없음부속
대응 소켓Socket AM4


ZEN 마이크로 아키텍처에서는 4기의 CPU코어와 8MB의 L3캐시로 구성된 CCX(Core Complex)를 기본 모듈로 하며 상위 Ryzen 7에는 이를 2모듈 갖춤으로써 8코어 16스레드 CPU을 실현했다.


이 2모듈의 CCX라는 구성은 Ryzen 5에서도 공통으로 각 CCX모듈이 갖춘 CPU코어 가운데 6코어 12스레드 CPU에는 1기씩, 4코어 8스레드 CPU에는 2기씩 CPU코어를 무효화하고 있다.


AMD에서 차용한 기자재는 Ryzen 5 1600X와 Ryzen 5 1500X의 2제품과 AMD B350 칩셋을 탑재한 ASRock의 "Fatal1ty AB350 Gaming K4" 메인보드, DDR4-3200 대응 8GB 메모리 X2 키트 GeIL "GEX416GB3200C16ADC". 여기에 그래픽 카드로 GeForce GTX 1080 Ti 레퍼런스 모델을 추가했다.


이번 테스트를 실시하는데 있어 DDR4-3200 또는 DDR4-2933에서 메모리 동작, HPET(고정밀도 이벤트 타이머) 무효화, Windows 전원 구성은 고성능 이라는 설정을 적용하도록 하는 AMD로부터의 요청이 있었다. 기본적인 요청대로 설정을 했지만 메모리는 Ryzen 5 1500X가 DDR4-3200 설정으로 가동이 불가능했기 때문에 Ryzen 5의 메모리 클럭은 DDR4-2933으로 통일하고 있으며 DDR4-2933 동작에 대해서도 CPU 동작 보증 범위 밖이다.


비교 대상에는 인텔의 4코어 4스레드 CPU인 Core i5-7600K와 Intel B250 칩셋 기반의 GIGABYTE "GA-B250M-D3H"를 준비했다. 이는 AMD의 요청에 기초한 것으로서 Core i5-7600K는 Ryzen 5 1600X와 Intel B250 칩셋은 AMD B350 칩셋과 각각 같은 가격대 이기에 비교 대상으로 선정한 것 같다.


또한 Core i5-7600K 환경의 메모리 설정은 DDR4-2400 이다. 이는 Intel B250 칩셋의 제약에 따른 것으로 이 칩셋에서는 최대 메모리 클럭이 CPU 내장 메모리 컨트롤러의 최대 대응 클락으로 잠겼으며 오버클럭 메모리를 사용해도 Core i5-7600K에서는 DDR4-2400을 넘는 메모리 클럭은 설정할 수 없다.


CPU 뿐만 아니라 메모리 오버클럭에서도 제한된 인텔 플랫폼보다 값싼 AMD B350 칩셋이 제한없는 오버클럭을 할 수 있는 것이 AMD 플랫폼으로서 어드밴티지라는 걸까?



[표 2] 테스트 장비 목록
CPURyzen 5 1600X/1500XCore i5-7600K
메인보드ASRock Fatal1ty AB350 Gaming K4
UEFI:2.20
GIGABYTE GA-B250M-D3H
UEFI:F4
RAMDDR4-2933 8GB×2 (2ch, 16-18-18-36, 1.35V)DDR4-2400 8GB×2 (2ch, 17-17-17-39, 1.2V)
GPUGeForce GTX 1080 Ti 11GB (FOUNDERS EDITION)
스토리지OCZ VTR180-25SAT3-480G (480GB SSD/SATA 6Gbps)
파워KRPW-TI700W/94+ (700W 80PLUS Titanium)
드라이버GEFORCE GAME READY DRIVER 381.65
OSWindows 10 Pro 64bit (1607/build 14393.970)


이번에 수행한 벤치마크 테스트는 "CINEBENCH R15(그래프 1)","x264 FHD Benchmark(그래프 2)","HandBrake(그래프 3)","TMPGEnc Video Mastering Works 6(그래프 4)","PCMark 8(그래프 5)","SiSoftware Sandra Platinum(그래프 6~12)","3DMark(그래프 13~15)","파이널 판타지 XIV(그래프 16)","Ashes of the Singularity(그래프 17)","오버워치(그래프 18)","Watch Dogs 2(그래프 19)".


우선 CPU의 성능을 체크하는 벤치마크 소프트웨어 결과부터 확인한다.


3DCG 렌더링의 CPU 성능을 측정하는 CINEBENCH R15에서는 싱글 스레드 성능 테스트(Single Core)와 멀티 쓰레드 성능 테스트(All Core)를 실행했다. Single Core에서는 카비레이크 아키텍처를 채용하는 Core i5-7600K이 강함을 보이면서 Ryzen 5 1600X에 약 8%, Ryzen 5 1500X에 약 13% 앞서고 있다.


한편 All Core에서는 Ryzen 5 1600X가 약 90% 차이라는 2배 가까운 스코어로 Core i5-7600K를 압도하면서 가격대가 다른 Ryzen 5 1500X에서도 Core i5-7600K에 25% 앞서고 있다. 같은 가격대의 인텔 CPU 보다 코어와 스레드 숫자에서 우세한 Ryzen 5가 갖는 다중 스레드 성능이 반영된 결과다.



01_s.png


H.264 형식 동영상 인코딩 테스트인 x264 FHD Benchmark에서는 Ryzen 5 1600X가 40.43fps를 기록하여 최고 점수를 획득. 이는 2번째 결과가 된 Ryzen 5 1500X의 27.86fps를 약 45% 웃도는 결과이며 라이벌 Core i5-7600K를 약 70% 웃돈다.


02_s.png


Ryzen 7의 검증 시에 이용한 "HWBOT x265 Benchmark"가 HPET을 무효화한 환경에서는 실행할 수 없기 때문에 이번에는 오픈 소스 동영상 변환 소프트웨어 "HandBrake"을 사용하여 H.264 형식과 H.265 형식으로 인코딩 테스트를 실시했다.


인코더에 x264를 이용한 H.264 형식으로 변환에서는 가장 짧은 71초로 처리를 마친 Ryzen 5 1600X를 기준으로 Ryzen 5 1500X는 약 154%, Core i5-7600K은 약 169%의 시간을 필요로 하고 있으며 Ryzen 5 1600X가 높은 속도를 보인다.


x265를 이용한 H.265 형식 변환에서는 최고 속도 107초를 기록한 Ryzen 5 1600X, Core i5-7600K가 2번째로 143초를 기록하고 Ryzen 5 1500X가 최하위인 163초다. Ryzen 5 1600X를 기준으로 한 경우 Ryzen 5 1500X의 처리 시간은 약 152%로 H.264 형식 때와 달라지지 않지만 Core i5-7600K의 처리 시간은 약 134%이며 H.265 형식으로 변환에서 Core i5-7600K가 Ryzen 5와의 차이를 크게 줄인 결과다.



03_s.png


TMPGEnc Video Mastering Works 6에서는 H.264 형식과 H.265 형식으로 동영상 인코딩을 AVX2 확장 명령의 유무로 각 2개씩 실행했다.


여기서도 빠른 결과를 기록한 것은 Ryzen 5 1600X로 Ryzen 5 1500X의 약 66%, Core i5-7600K의 60~79% 정도의 시간으로 처리를 완료하고 있다.


TMPGEnc Video Mastering Works 6은 Ryzen 7을 검증하면서 AVX2 확장 명령을 꺼둔 것이 Ryzen의 성능이 향상된다는 결과가 나왔는데 이 경향은 소프트웨어의 업그레이드가 진행된 이번 검증까지 변화하지 않아 Ryzen 5는 AVX2를 무효로하면 H.264 형식으로 약 6%, H.265 형식에서 약 3%, 처리 속도가 향상되고 있다. H.265 형식에서 AVX2를 사용함으로써 약 30%의 속도 향상을 이루는 Core i5-7600K와 대조적이다.



04_s.png


PC의 종합 성능을 체크하는 PCMark 8의 모든 테스트에서 Core i5-7600K가 최고 점수를 기록하고 있다. 두번째인 Ryzen 5 1600X과 차이는 Home에서 약 8%, Creative가 약 1%, Work는 약 5%다. 여기에서는 Core i5-7600K의 싱글 스레드 성능 차이가 보인다.


05_s.png


CPU의 계산 능력을 측정하는 Sandra의 "Processor Arithmetic"에서는 정수 연산을 행하는 Dhrystone는 Ryzen 5 1500X와 Core i5-7600K이 거의 비슷한 스코어를 기록하고 Ryzen 5 1600X가 그것들의 약 1.5배라는 걸출한 스코어를 기록했다. 부동 소수점 연산을 행하는 Whetstone에서는 Ryzen 5 1500X가 Core i5-7600K에 30~40% 정도의 차이를 내며 Ryzen 5 1600X는 거기서 다시 1.5배 높은 스코어다.


"Processor Multi-Media"에서는 Core i5-7600K가 크게 기세를 올리고 있지만 Multi-Media Long-Int 이외는 Ryzen 5 1600X가 톱 스코어를 기록하고 있다. 최신 확장 명령을 이용할때는 Core i5-7600K의 성능은 뛰어나지만 Ryzen 5 1600X의 멀티 쓰레드 성능의 차이가 그것을 능가했다는 것이다.


암호 처리 성능을 측정하는 "Cryptography"에서는 Encryption/Decryption Bandwidth에서 Ryzen 5 1600X와 Ryzen 5 1500X의 차이는 약 4%에 머물고 있다. 한편 Hashing Bandwidth에서는 Ryzen 5 1600X가 Ryzen 5 1500X의 1.5배 스코어를 기록했으며 CPU의 계산 능력 차이가 스코어에 반영되는 것으로 나타났다.



06_s.png
07_s.png
08_s.png


메모리 대역을 측정하는 Memory Bandwidths에서는 DDR4-2933 듀얼 채널 동작을 설정한 Ryzen 5가 33~34GB/sec를 기록하고 DDR4-2400의 듀얼 채널 동작인 Core i5-7600K의 약 23GB/sec을 10GB/sec 정도 넘는 메모리 대역폭을 실현하고 있다.


이는 오버클럭 메모리를 사용한 결과이며 Ryzen 5의 메모리 컨트롤러가 표준으로 지원하는 DDR4-2666동작에는 좀 더 낮은 메모리 대역이 될 것이다.



09_s.png


Sandra는 2017년 버전인 Sandra Platinum으로 업그레이드됐지만 AMD는 지금도 각종 벤치마크 프로그램이 Ryzen의 캐시 성능을 적절히 측정하지 못하고, 캐시와 DRAM 접속을 혼동하는 결과를 나타내는 경우가 있다며 독자적인 측정 결과를 보내고 있다.


Sandra의 "Cache Bandwidth"와 "Cache&Memory Latency"의 결과도 AMD의 독자적인 데이터와 크게 괴리감이 없어 보이지만 L3캐시에 대한 접근이 CCX를 아우르게 된 8MB 이상의 블록 크기 전송 대역의 저하와 레이턴시 증가를 확인할 수 있다.



i14_s.png
10_s.png
11_s.png
12_s.png


기본 벤치마크 테스트인 3DMark에서는 "Time Spy","Fire Strike Ultra","Fire Strike"의 3가지 테스트를 실행했다.


DirectX 12 테스트 Time Spy에서는 Ryzen 5 1600X가 Ryzen 5 1500X을 약 10% 넘는 스코어를 기록하고 있다. Core i5-7600K의 스코어는 Ryzen 1500X의 약 97%에 그치며 비교 제품 중 최하위였다.


4K 해상도에서 실행되는 Fire Strike Ultra에서도 Ryzen 7 1600X가 여전히 톱 스코어를 기록하고 있지만 CPU의 차이에 의한 점수 차이는 줄어들고 있어 Ryzen 5 1500X와는 약 2%, Core i5-7600K와는 약 5%의 점수 차이다.


가장 가벼운 테스트인 Fire Strike에서는 Ryzen 1600X는 최고의 스코어, Ryzen 5 1500X는 Core i5-7600K에 간발의 차로 역전되고 있다. Core i5-7600K는 CPU와 GPU의 복합 테스트인 Combined Test에서 큰 스코어로 늘리고 있어 이것이 Ryzen 5 1500X를 역전하는 요인이 된 것 같다.



13_s.png
14_s.png
15_s.png


파이널 판타지 XIV에서는 최고 품질 설정(DirectX 11)으로 풀 HD와 4K 화면 해상도에서 테스트를 실시했다. 이곳에서 최고 점수를 획득한 것은 Core i5-7600K로 1% 안팎으로 근소하게 Ryzen 5 1600X가 나란히 있다. 비교 제품 중 가장 낮은 점수였다 Ryzen 5 1500X는 Core i5-7600K에서 2~5% 가량 낮은 점수였다.



16_s.png


Ashes of the Singularity에서는 DirectX 12 모드로 기동하고 1920×1080 화면 해상도에서 렌더링 품질을 Standard와 Crazy(최고 설정) 2종류로 설정하여 테스트를 실행했다.


벤치마크 스코어에서 프레임 레이트의 "Average Framerate"와 GPU가 병목이 되지 않았던 경우의 가상 평균 프레임 레이트인 "Average CPU Framerate"를 취득했으나 이번 테스트 결과에서는 모두 2개의 프레임 레이트가 거의 같은 값이다. 이는 GPU가 병목이 되지 않음을 의미하며 프레임 레이트를 포화한 원인이 CPU에 있다는 것이다.


결과로 가장 다중 스레드 성능이 높은 Ryzen 5 1600X가 거의 비슷하게 Core i5-7600K와 Ryzen 5 1500X에 약 10%의 차로 앞서고 있다.



17_s.png


온라인 FPS 게임 오버워치에서는 1920×1080의 화면 해상도에서 렌더링 품질을 Normal과 Epic(최고 설정)로 설정하여 테스트를 했다.


가장 높은 프레임 레이트를 기록한 것은 Core i5-7600K로 Ryzen 5 1600X에 1% 안팎, Ryzen 5 1500X에 4%안팎의 차이를 둔다.


무엇보다 CPU의 차이로 생긴 프레임 레이트의 차이는 결정적인 것이라 말하기 어렵게 이 정도의 차이가 있으면 높은 리프레시 레이트 디스플레이를 사용한 환경에서도 게임 체험에 큰 차이는 생기지 않는다.



18_s.png


Watch Dogs 2에서는 1920×1080 화면 해상도에서 렌더링 품질을 "중"과 "최대"로 하면서 프레임 레이트를 측정했다.


여기에서는 Ryzen 5 1600X가 가장 높은 프레임 레이트를 기록했으며 Ryzen 5 1500X에 약 19~20%, Core i5-7600K에 약 29~39%라는 큰 차이가 있다. Watch Dogs 2는 최대 12스레드를 사용하는 다중 스레드 성능 요구가 지극히 높은 게임이며 이 결과는 각 CPU의 멀티쓰레드 성능 차이가 현저하게 반영된 결과라고 할 것이다.



19_s.png


마지막은 소비전력 비교 결과다. 아이들시 소비 전력은 Ryzen 5가 43W, Core i5-7600K가 31W라는 결과였다. 아이들시 소비 전력으로 10W 이상의 차이는 크게 느껴지지만 메인보드의 사양이나 메모리 설정이 다른 것도 적잖이 영향을 주고 있는 점에는 주의해야 한다.


CPU 벤치마크 테스트 실행 중 소비 전력은 Ryzen 5 1600X가 피크에 130W 정도인 반면 Ryzen 5 1500X는 100W 안팎이다. Core i5-7600K는 90W 정도로 가장 낮은 전력을 기록했지만 CINEBENCH R15 나 H.264 형식 동영상 변환시의 성능 차이를 생각하면 전력 효율에서 Core i5-7600K이 가장 뛰어나다고는 말하기 어렵다.


3D 벤치마크를 실행했을때 피크 전력은 많은 테스트에서 Ryzen 5 1600X가 330~345W 정도로 가장 높고, Ryzen 5 1500X이 2~6W의 차로 이어지며 가장 소비 전력이 낮은 Core i5-7600K가 Ryzen 5 1600X 보다 14~25W 정도 낮은 소비 전력이 되고 있다.


또한 Watch Dogs 2가 다른 3D계열 벤치마크 테스트와 분명히 다른 결과가 되는 것은 CPU에 발이 묶여 GPU가 풀가동하지 않은 탓이다. Ryzen 5 1600X가 현저히 높은 소비 전력이 되는 것은 GPU 사용률 상승으로 그래픽 카드가 소비하는 전력이 증가하고 있기 때문이다.



20_s.png


미들 레인지에 강력한 멀티 쓰레드 성능을 가져올 Ryzen 5

Ryzen 7이 그러했듯이 이 가격대의 인텔제 CPU에 비해 Ryzen 5가 갖는 다중 스레드 성능은 매우 뛰어나다. 이번 테스트에서 Core i5-7600K와 Ryzen 1600X가 이 가격대의 제품이 되는데 그래프를 보면 Ryzen 5 1500X가 이 가격대 제품이 아닌가 싶을 정도다.


Ryzen가 자랑하는 H.264와 CINEBENCH R15 등의 결과는 물론 게임에서도 Ryzen 5 1600X가 Core i5-7600K에 뒤떨어지고 있다는 인상은 없다. 물론 환경에 따라 Core i5-7600K가 앞서는 사람도 있지만 이번 테스트에 Core i5-7600K가 체감적으로 유리한 게임은 거의 없고 Watch Dogs 2 등은 Ryzen 5 1600X가 분명하게 쾌적하다. 30만원 전후로 투입될 6코어 12스레드 Ryzen 5는 미들 레인지 CPU 시장에 강한 임펙트를 가져올 것이다.


20만원 초반에 판매되는 4코어 8스레드 Ryzen 5는 인텔의 이 가격대 제품 이상으로 6코어 12스레드 Ryzen 5가 강한 라이벌이 될 것 같다. 이번에 테스트한 Ryzen 5 1500X의 성능은 훌륭한 것이지만 Ryzen 1600X 사이에는 약 1.5배의 성능 차이가 존재하고 있다. 가격이냐 성능이냐 꽤 힘든 선택이 될 것.


출처 - http://pc.watch.impress.co.jp/docs/topic/review/1054356.html

반응형
Posted by 랩터 인터내셔널


Qualcomm Snapdragon SoCs: Three Generations
SoC Snapdragon 835
(MSM8998)
Snapdragon 820 / 821
(MSM8996 / MSM8996 Pro)
Snapdragon 810
(MSM8994)
CPU 4x Kryo 280 Performance
@ 2.45GHz
4x Kryo 280 Efficiency
@ 1.90GHz
2x Kryo @ 2.15GHz / 2.34GHz
2x Kryo @ 1.59GHz / 2.19GHz
4x Cortex-A57 @ 2.00GHz
4x Cortex-A53 @ 1.50GHz
GPU Adreno 540 @ 710MHz ? Adreno 530 @ 624MHz / 653MHz Adreno 430 @ 630MHz
Memory 2x 32-bit @ 1866MHz
LPDDR4x
29.9GB/s
2x 32-bit @ 1866MHz
LPDDR4
29.9GB/s
2x 32-bit @ 1600MHz
LPDDR4
25.6GB/s
ISP/Camera Dual 14-bit Spectra 180 ISP
1x 32MP or 2x 16MP
Dual 14-bit Spectra ISP
1x 25MP or 2x 13MP
Dual 14-bit ISP
1x 21MP
Encode/Decode 2160p30 (2160p60 decode), 1080p120
H.264 & H.265
2160p30 (2160p60 decode), 1080p120
H.264 & H.265
2160p30 (2160p60 decode), 1080p120
H.264 & H.265
Integrated Modem Snapdragon X16 LTE
(Category 16/13)
DL = 1000Mbps
3x20MHz CA, 256-QAM
UL = 150Mbps
2x20MHz CA, 64-QAM
Snapdragon X12 LTE
(Category 12/13)
DL = 600Mbps
3x20MHz CA, 256-QAM
UL = 150Mbps
2x20MHz CA, 64-QAM
Snapdragon X10 LTE
(Category 9)
DL = 450Mbps
3x20MHz CA, 64-QAM
UL = 50Mbps
1x20MHz CA, 16-QAM
Mfc. Process 10nm LPE 14nm LPP 20nm SoC


퀄컴 스냅드래곤 835 스펙 (MSM8998)

10나노 LPE 공정, 4x Kryo 280 성능 코어(2.45GHz) + 4x Kryo 280 효율 코어(1.90GHz)

아드레노 540(710MHz) GPU / 1866MHz LPDDR4x (29.9GB/s) RAM

듀얼 14비트 스펙트라 180 ISP, 1x 32MP / 2x 16MP

스냅드래곤 X16 LTE 모뎀 (카테고리 16/13),


이하 성능 비교




출처 - http://www.anandtech.com

반응형
Posted by 랩터 인터내셔널